fumarates and Hypertrophy

fumarates has been researched along with Hypertrophy* in 6 studies

Other Studies

6 other study(ies) available for fumarates and Hypertrophy

ArticleYear
Arterial wall hypertrophy is ameliorated by α2-adrenergic receptor antagonist or aliskiren in kidneys of angiotensinogen-knockout mice.
    Clinical and experimental nephrology, 2018, Volume: 22, Issue:4

    Arterial hypertrophy and interstitial fibrosis are important characteristics in kidneys of angiotensinogen-knockout (Atg. We performed renal denervation and administered the α2-adrenergic receptor (AR) antagonist, atipamezole, to Atg. Norepinephrine content in kidneys of Atg. Alpha2-AR signaling is one of the causes of persistent renal arterial hypertrophy in Atg

    Topics: Adrenergic alpha-2 Receptor Antagonists; Amides; Angiotensinogen; Animals; Fibrosis; Fumarates; Hypertrophy; Japan; Kidney; Mice; Mice, Inbred ICR; Mice, Knockout; Renal Artery; Renin; Tokyo; Transforming Growth Factor beta1

2018
TAK-272 (imarikiren), a novel renin inhibitor, improves cardiac remodeling and mortality in a murine heart failure model.
    PloS one, 2018, Volume: 13, Issue:8

    The renin-angiotensin system (RAS), which plays an important role in the progression of heart failure, is efficiently blocked by the inhibition of renin, the rate-limiting enzyme in the RAS cascade. In the present study, we investigated the cardioprotective effects of TAK-272 (SCO-272, imarikiren), a novel, orally effective direct renin inhibitor (DRI), and compared its efficacy with that of aliskiren, a DRI that is already available in the market. TAK-272 was administered to calsequestrin transgenic (CSQ-tg) heart failure mouse model that show severe symptoms and high mortality. The CSQ-tg mice treated with 300 mg/kg, the highest dose tested, of TAK-272 showed significantly reduced plasma renin activity (PRA), cardiac hypertrophy, and lung congestion. Further, TAK-272 reduced cardiomyocyte injury accompanied by an attenuation of the increase in NADPH oxidase 4 and nitric oxide synthase 3 expressions. TAK-272 also prolonged the survival of CSQ-tg mice in a dose-dependent manner (30 mg/kg: P = 0.42, 100 mg/kg: P = 0.12, 300 mg/kg: P < 0.01). Additionally, when compared at the same dose level (300 mg/kg), TAK-272 showed strong and sustained PRA inhibition and reduced the heart weight and plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, a heart failure biomarker, while aliskiren showed a significant weaker PRA inhibition and failed to demonstrate any cardioprotective effects. Our results showed that TAK-272 is an orally active and persistent renin inhibitor, which reduced the mortality of CSQ-tg mice and conferred protection against cardiac hypertrophy and injury. Thus, TAK-272 treatment could provide a new therapeutic approach for heart failure.

    Topics: Amides; Animals; Benzimidazoles; Cardiovascular Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Fumarates; Heart; Heart Failure; Hypertrophy; Lung Diseases; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Transgenic; Morpholines; Piperidines; Protective Agents; Random Allocation; Renin

2018
Aliskiren limits abdominal aortic aneurysm, ventricular hypertrophy and atherosclerosis in an apolipoprotein-E-deficient mouse model.
    Clinical science (London, England : 1979), 2014, Volume: 127, Issue:2

    Aliskiren is a direct renin inhibitor developed to treat hypertension. Several clinical studies have suggested that aliskiren has beneficial effects on cardiovascular diseases beyond its antihypertensive effect. In the present study, we examined whether aliskiren limits the progression of AAA (abdominal aortic aneurysm), VH (ventricular hypertrophy) and atherosclerosis in an AngII (angiotensin II)-infused mouse model. ApoE-/- (apolipoprotein-E-deficient) mice were infused subcutaneously with AngII (1000 ng/kg of body weight per day; 4 weeks) to induce AAA and VH. At the completion of the AngII infusion, mice were randomly allocated to three groups to receive vehicle control, low-dose aliskiren (10 mg/kg of body weight per day) or high-dose aliskiren (50 mg/kg of body weight per day) for 4 weeks. Suprarenal aortic diameter assessed by ultrasound was significantly smaller in mice administered aliskiren at days 42 and 56. Aliskiren also significantly reduced the normalized heart weight, ventricular myocyte cell width and aortic arch atherosclerosis. Aliskiren lowered PRR (pro-renin receptor) expression and MAPK (mitogen-activated protein kinase) activity in the suprarenal aorta and heart. Aortic infiltration of T-lymphocytes and macrophages was reduced by aliskiren. In conclusion, aliskiren limits the progression of AAA, VH and atherosclerosis in an AngII-infused mouse model.

    Topics: Amides; Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Apolipoproteins E; Atherosclerosis; Blood Pressure; Disease Models, Animal; Fumarates; Hypertension; Hypertrophy; Mice; Mice, Inbred C57BL; Mice, Knockout

2014
Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats.
    Journal of hypertension, 2010, Volume: 28, Issue:10

    The blood pressure-lowering effect of the renin inhibitor aliskiren equals that of angiotensin-converting enzyme (ACE) inhibitors and angiotensin (Ang) II type 1 (AT1) receptor blockers. Whether aliskiren offers end-organ protection remains to be investigated. Here, we compared the cardiac effects of aliskiren, the AT1 receptor blocker irbesartan and the ACE inhibitor captopril in spontaneously hypertensive rats (SHR) at equi-hypotensive doses.. SHR were treated for 1-3 weeks with vehicle, aliskiren, captopril or irbesartan (100, 3 and 15 mg/kg per day, respectively) using an osmotic minipump, and compared to vehicle-treated Wistar-Kyoto (WKY) controls. All drugs lowered (but not normalized) mean arterial pressure in SHR equi-effectively, as monitored by radiotelemetry, without altering heart rate. All drugs also reduced the increased cardiomyocyte area in SHR, and tended to normalize the elevated brain natriuretic peptide plasma levels. In the Langendorff set-up, all drugs normalized the diminished endothelium-dependent vasodilator response to bradykinin in SHR. Moreover, aliskiren and irbesartan, but not captopril, decreased the enhanced coronary Ang II response in SHR. Aliskiren reduced plasma renin activity and the plasma and tissue angiotensin levels at 1 week of treatment; yet, after 3 weeks of aliskiren treatment only the cardiac angiotensin levels remained suppressed, whereas no tissue angiotensin reductions were seen with captopril or irbesartan.. For a given decrease in blood pressure, aliskiren improves coronary endothelial function and decreases cardiac hypertrophy in SHR to at least the same degree as ACE inhibition and AT1 receptor blockade. In addition, aliskiren diminishes the enhanced Ang II response in the coronary circulation of SHR and offers superior long-term cardiac angiotensin suppression.

    Topics: Amides; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Angiotensins; Animals; Biphenyl Compounds; Blood Pressure; Captopril; Disease Models, Animal; Dose-Response Relationship, Drug; Fumarates; Heart; Heart Ventricles; Hypertension; Hypertrophy; Irbesartan; Male; Natriuretic Peptide, Brain; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Renin; Tetrazoles

2010
[Pathologic anatomy of primary pulmonary hypertension. Biopsy findings in patients and in experimental pulmonary hypertension].
    Zeitschrift fur Kreislaufforschung, 1970, Volume: 59, Issue:10

    Topics: Animals; Appetite Depressants; Fumarates; Humans; Hyperplasia; Hypertension, Pulmonary; Hypertrophy; Oxazoles; Pulmonary Artery; Rats

1970
[Menocil dependent pulmonary hypertension. Preliminary morphological findings in 8 pathologically and anatomically studied cases].
    Zeitschrift fur Kreislaufforschung, 1970, Volume: 59, Issue:10

    Topics: Appetite Depressants; Dilatation; Fumarates; Humans; Hyperplasia; Hypertension, Pulmonary; Hypertrophy; Necrosis; Oxazoles; Pulmonary Artery

1970