fucoxanthin has been researched along with Insulin-Resistance* in 7 studies
3 review(s) available for fucoxanthin and Insulin-Resistance
Article | Year |
---|---|
Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin.
Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a unique and wide variety of biological activities. Upon absorption, Fx is metabolized to fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is also reported to show anti-cancer activity through the regulation of several biomolecules and signaling pathways that are involved in either cell cycle arrest, apoptosis, or metastasis suppression. Among the biological activities of Fx, anti-obesity is the most well-studied and most promising effect. This effect is primarily based on the upregulation of thermogenesis by uncoupling protein 1 expression and the increase in the metabolic rate induced by mitochondrial activation. In addition, Fx shows anti-diabetic effects by improving insulin resistance and promoting glucose utilization in skeletal muscle. Topics: Adipose Tissue, White; Animals; Anti-Obesity Agents; Antioxidants; beta Carotene; Dietary Supplements; Drug Discovery; Free Radicals; Gene Expression Regulation; Humans; Hypoglycemic Agents; Insulin Resistance; Liver; Molecular Structure; Neuroprotective Agents; Receptors, Scavenger; RNA, Messenger; Seaweed; Singlet Oxygen; Uncoupling Protein 1; Xanthophylls | 2020 |
Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review.
Obesity, which results from an imbalance between energy intake and energy expenditure, has become a major health risk factor worldwide, causing numerous and various diseases such as diabetes, hypertension, and cardiovascular diseases. Fucoxanthin, a specific carotenoid in brown algae, has garnered much attention for its anti-obesity and anti-diabetic effects attributable to a unique mechanism. Fucoxanthin induces uncoupling protein 1 (UCP1) expression in white adipose tissue (WAT). That inner membrane mitochondrial protein, UCP1, can dissipate energy through oxidation of fatty acids and heat production. Furthermore, fucoxanthin improves insulin resistance and ameliorates blood glucose levels through down-regulation of adipocytokines related to insulin resistance in WAT and up-regulation of glucose transporter 4 (GLUT4) in skeletal muscle. Algae fucoxanthin is a beneficial compound for the prevention of the metabolic syndrome. Topics: Adipokines; Adipose Tissue, White; Animals; Blood Glucose; Diabetes Mellitus; Disease Models, Animal; Energy Metabolism; Fatty Acids; Gene Expression; Gene Expression Regulation, Plant; Glucose Transporter Type 4; Humans; Insulin Resistance; Ion Channels; Metabolic Syndrome; Mice; Mitochondrial Proteins; Muscle, Skeletal; Obesity; Oxidation-Reduction; Phaeophyceae; Phytotherapy; Uncoupling Protein 1; Xanthophylls | 2015 |
The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds.
Obesity and type 2 diabetes are pathologies with rapidly growing prevalence throughout the world. A few molecular targets offer the most hope for anti-obesity and anti-diabetic therapeutics. One of the keys to success will be the induction of uncoupling protein 1 (UCP1) in abdominal white adipose tissue (WAT) and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity and anti-diabetic effects of fucoxanthin, a characteristic carotenoid found in brown seaweeds, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of carotenoids for the expression of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups. Topics: Abdominal Fat; Animals; Anti-Obesity Agents; Blood Glucose; Cytokines; Dietary Supplements; Humans; Hypoglycemic Agents; Insulin Resistance; Ion Channels; Mitochondria; Mitochondrial Proteins; Phaeophyceae; Phytotherapy; Plant Extracts; Uncoupling Protein 1; Xanthophylls | 2011 |
1 trial(s) available for fucoxanthin and Insulin-Resistance
Article | Year |
---|---|
Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis.
Non-alcoholic fatty liver disease (NAFLD) is the emerging cause of chronic liver disease globally and lack of approved therapies. Here, we investigated the feasibility of combinatorial effects of low molecular weight fucoidan and high stability fucoxanthin (LMF-HSFx) as a therapeutic approach against NAFLD. We evaluated the inhibitory effects of LMF-HSFx or placebo in 42 NAFLD patients for 24 weeks and related mechanism in high fat diet (HFD) mice model and HepaRG Topics: Adiponectin; Adult; Aged; Animals; Cell Line; Diet, High-Fat; Disease Models, Animal; Drug Therapy, Combination; Humans; Inflammation; Insulin Resistance; Leptin; Lipid Metabolism; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Mice, Nude; Middle Aged; Non-alcoholic Fatty Liver Disease; Polysaccharides; Xanthophylls; Young Adult | 2021 |
3 other study(ies) available for fucoxanthin and Insulin-Resistance
Article | Year |
---|---|
[Effect of fucoxanthin on insulin resistance in obese mice induced by high fat diet].
The aim of this paper was to study the effect and mechanism of fucoxanthin on insulin resistance of obese mice induced by high-fat diet. Fifty C57 BL/6 J male mice were randomly divided into control group and high-fat diet group. The insulin resistance model was induced with high-fat diet for 12 weeks, and model mice were randomly divided into model group, fucoxanthin-0.2% group, fucoxanthin-0.4% group and metformin group. After dietary treatment for 6 weeks, the body weight and epididymal fat weight in each group were measured. Fasting blood glucose(FBG), fasting insulin(FINS), total cholesterol(TC), triglyceride(TG), low-density lipoprotein(LDL-C) and high-density lipoprotein(HDL-C) were measured, and insulin resistance index(HOMA-IR) was calcula-ted. The pathological morphology in liver was observed by hematoxylin eosin staining, and the expressions of some key proteins in insulin receptor substrate 1(IRS-1)/posphoinositide 3-kinase(PI3 K)/serine-threonine kinase(Akt) and peroxisome proliferators-activated receptor-γ(PPARγ)/sterol regulatory element binding protein-1(SREBP-1)/fatty acid synthetase(FAS) pathways in liver were detected by Western blot. According to the findings, compared with the model group, levels of body weight, epididymal fat weight, FBG, FINS, TC, TG, LDL-C and HOMA-IR, as well as protein expressions of PPARγ, SREBP-1 and FAS in liver were significantly reduced(P<0.05 or P<0.01), while level of HDL-C and protein expressions of p-IRS-1, IRS-1, PI3 K and p-Akt in liver were signi-ficantly increased after treatment with fucoxanthin(P<0.05 or P<0.01). And the pathological changes of liver tissue in fucoxanthin-treated mice were also improved obviously. The results showed that fucoxanthin could improve obesity, hyperglycemia and hyperlipidemia, and alleviate insulin resistance in obese mice, and its mechanism is possibly related to the regulation of IRS-1/PI3 K/Akt and PPARγ/SREBP-1/FAS pathways. Topics: Animals; Diet, High-Fat; Insulin; Insulin Resistance; Liver; Male; Mice; Mice, Obese; Xanthophylls | 2021 |
Fucoxanthin-Rich Brown Algae Extract Improves Male Reproductive Function on Streptozotocin-Nicotinamide-Induced Diabetic Rat Model.
Hypogonadism and oxidative stress are occurring commonly in men with diabetes and associated male infertility. This study aimed to investigate the capability of anti-oxidative and anti-inflammatory properties of fucoxanthin as well as to evaluate its protective effects on male reproduction in diabetic rats. The RAW 264.7 macrophage cells were used to evaluate the anti-oxidative and anti-inflammatory activity. Thirty male Sprague-Dawley rats were induced by streptozotocin-nicotinamide for a diabetes model and fed either with three different doses of fucoxanthin (13, 26, and 65 mg/kg) or rosiglitazone (0.571 mg/kg) for four weeks. The fucoxanthin significantly inhibited nitric oxide production and reduced reactive oxygen species level in lipopolysaccharide-induced RAW 264.7 cells. In the animal study, fucoxanthin administration improved insulin resistance, restored sperm motility, decreased abnormal sperm number, and inhibited lipid peroxidation. Moreover, it restored GPR54 and SOCS-3 mRNA expression in the hypothalamus and recovered luteinizing hormone level, as well as the testosterone level. In conclusion, fucoxanthin not only possessed antioxidant and anti-inflammatory properties but also decreased the diabetes signs and symptoms as well as improved spermatogenesis and male reproductive function. Topics: Animals; Antioxidants; Blood Glucose; Cell Survival; Diabetes Mellitus, Experimental; Disease Models, Animal; Inflammation Mediators; Insulin; Insulin Resistance; Kisspeptins; Male; Malondialdehyde; Mice; Niacinamide; Nitric Oxide; Oxidative Stress; Phaeophyceae; Rats, Sprague-Dawley; RAW 264.7 Cells; Reactive Oxygen Species; Receptors, Kisspeptin-1; Reproduction; RNA, Messenger; Spermatozoa; Streptozocin; Suppressor of Cytokine Signaling 3 Protein; Testis; Xanthophylls | 2019 |
Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells.
Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group. In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells. Topics: 3T3-L1 Cells; Adipocytes; Adipose Tissue, White; Animals; beta Carotene; Blood Glucose; Cell Line; Chemokine CCL2; Diabetes Mellitus, Experimental; Diet; Disease Models, Animal; Inflammation; Insulin Resistance; Macrophages; Mice; Obesity; RNA, Messenger; Tumor Necrosis Factor-alpha; Weight Gain; Xanthophylls | 2015 |