fucoxanthin has been researched along with Cognitive-Dysfunction* in 3 studies
3 other study(ies) available for fucoxanthin and Cognitive-Dysfunction
Article | Year |
---|---|
Fucoxanthin, a marine derived carotenoid, attenuates surgery-induced cognitive impairments via activating Akt and ERK pathways in aged mice.
Fucoxanthin is the most abundant marine carotenoid derived from brown seaweeds, possesses antioxidant, anti-inflammatory, and neuroprotective properties, and might be benefit for the treatment of neurological disorders. Post-operative cognitive dysfunction (POCD) is a neurological symptom with learning and memory impairments, mainly affecting the elderly after surgery. However, there is no effective treatments for this symptom.. In this study, we evaluated the neuroprotective effects of fucoxanthin against POCD in aged mice after surgery.. The animal model of POCD was established in 12 - 14 month aged mice with a laparotomy. Curcumin was used as a positive control. The beneficial effects of fucoxanthin on POCD was analyzed by behavioral tests. Pro-inflammatory cytokines were measured by Enzyme-linked Immunosorbent Assay (ELISA). And the expressions of key proteins in the Akt and ERK signaling pathways were analyzed by Western blotting analysis. The morphology of microglial cells and astrocytes was explored by immunohistochemical staining. The activity of antioxidant superoxide dismutase (SOD) and catalase (CAT) were measured by anti-oxidative enzyme activity assays.. Fucoxanthin at 100 - 200 mg/kg significantly attenuated cognitive dysfunction, with a similar potency as curcumin, in aged mice after surgery. In addition, fucoxanthin and curcumin significantly increased the expression of pAkt, prevented the activation of microglial cells and astrocytes, and inhibited the secretion of pro-inflammatory interleukin-1β (IL - 1β) and tumor necrosis factor-α (TNF-α). Furthermore, fucoxanthin and curcumin elevated the ERK pathway and potently increased the activity of antioxidant enzymes. Most importantly, U0126, an inhibitor of the ERK pathway, and wortmannin, an inhibitor of the Akt pathway, significantly abolished the cognitive-enhancing effects, as well as the inhibition of neuroinflammation and the reduction of oxidative stress, induced by fucoxanthin in aged mice after surgery.. Fucoxanthin might be developed as a functional food or drug for the treatment of POCD by inhibiting neuroinflammation and enhancing antioxidant capacity via the activation of the Akt and ERK signaling pathways. Topics: Aged; Animals; Antioxidants; Carotenoids; Cognitive Dysfunction; Curcumin; Humans; MAP Kinase Signaling System; Mice; Neuroinflammatory Diseases; Proto-Oncogene Proteins c-akt | 2023 |
Neuroprotective Effect of Fucoxanthin against Intracerebroventricular Streptozotocin (ICV-STZ) Induced Cognitive Impairment in Experimental Rats.
Alzheimer's disease (AD) is a neurological disorder characterized by loss of memory and cognitive functions caused by oxidative stress, neuroinflammation, change in neurotransmitter levels, and excessive deposition of Aβ. In the present study, fucoxanthin was employed as a protective strategy in Intracerebroventricular Streptozotocin (ICV-STZ) induced experimental model of cognitive impairment.. STZ was injected twice ICV (3 mg/kg) on alternate days 1 and 3, and Wistar rats were evaluated for the memory analysis using Morris water maze and elevated plus-maze. Fucoxanthin at low 50 mg/kg, p.o. and high dose 100 mg/kg, p.o. was administered for 14 days. All animals were sacrificed on day 29, and brain hippocampus tissue after isolation was used for biochemical (MDA, nitrite, GSH, SOD and Catalase), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (ACh, GABA Glutamate), Aβ. STZ-infused rats showed significant impairment in learning and memory, increased oxidative stress (MDA, nitrite), reduced antioxidant defense (GSH, SOD and Catalase), promoted cytokine release, and change in neurotransmitters level. However, fucoxanthin improved cognitive functions, restored antioxidant levels, reduced inflammatory markers dose-dependently, and restored neurotransmitters concentration.. The finding of the current study suggests that fucoxanthin could be the promising compound for improving cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms, and inhibition of acetylcholinesterase (AChE) enzyme activities, Aβ Topics: Acetylcholinesterase; Animals; Cognitive Dysfunction; Disease Models, Animal; Maze Learning; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Wistar; Streptozocin; Xanthophylls | 2021 |
Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro.
Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer's disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Brain-Derived Neurotrophic Factor; Carotenoids; Cholinesterase Inhibitors; Cognitive Dysfunction; Male; Mice; Mice, Inbred ICR; Molecular Docking Simulation; Scopolamine; Seaweed; Xanthophylls | 2016 |