fti-277 has been researched along with Sepsis* in 3 studies
3 other study(ies) available for fti-277 and Sepsis
Article | Year |
---|---|
Protective effects of farnesyltransferase inhibitor on sepsis-induced morphological aberrations of mitochondria in muscle and increased circulating mitochondrial DNA levels in mice.
Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis. Topics: Animals; DNA, Mitochondrial; Farnesyltranstransferase; Male; Methionine; Mice; Mitochondria; Muscle, Skeletal; Protective Agents; Sepsis; Time Factors | 2021 |
Farnesyltransferase inhibitor FTI-277 inhibits PD-L1 expression on septic spleen lymphocytes and promotes spleen lymphocyte activation.
Farnesyltransferase inhibitors have been tested in clinical trials for the treatment of tumours. In sepsis, the binding of programmed death 1 (PD-1) to programmed death ligand 1 (PD-L1) promotes lymphocyte apoptosis and decreases cytokine expression, thus affecting survival rates. The PD-1/PD-L1 pathway plays an important role in chronic viral infection, bacterial infection and sepsis. However, the precise immunosuppressive and anti-inflammatory functions of this pathway remain poorly understood. In our previous study, the induction of sepsis by caecal ligation and puncture (CLP) resulted in increased farnesyltransferase activity and farnesylated protein levels in the spleen relative to sham treatment. However, the effect of inhibition of farnesyltransferase activity on overall survival rates in patients with sepsis and the specific signalling pathway involved remain to be investigated. In this study, mice with CLP-induced sepsis were treated with farnesyltransferase inhibitor (FTI-277), and PD-L1 expression on septic spleen lymphocytes was examined. Flow cytometric analysis revealed that PD-L1 is expressed constitutively on lymphocytes and that PD-L1 protein expression was up-regulated strongly following CLP. FTI-277 down-regulated PD-L1 mRNA and protein expression on septic spleen lymphocytes in a dose-dependent manner. This effect was associated closely with nuclear factor kappa B (NF-κB). In addition, the significant damping effect of FTI-277 on the PD-L1 signal promoted interferon (IFN)-γ secretion, interleukin (IL)-2 production and splenocyte proliferation in response to anti-CD3 Topics: Animals; B7-H1 Antigen; Cecum; Cells, Cultured; Disease Models, Animal; Farnesyltranstransferase; Humans; Lymphocyte Activation; Lymphocytes; Male; Methionine; Mice; Mice, Inbred C57BL; NF-kappa B; Programmed Cell Death 1 Receptor; Sepsis; Signal Transduction; Spleen | 2017 |
Farnesyltransferase inhibitor FTI-277 reduces mortality of septic mice along with improved bacterial clearance.
Treatment with statins, inhibitors of HMG-CoA reductase, extends the survival of septic mice. However, the molecular mechanisms underlying the cholesterol-lowering, independent beneficial effects of statins in sepsis are poorly understood. The inhibition of protein isoprenylation, namely farnesylation and geranylgeranylation, has been proposed as a mediator of the pleiotropic protective effects of statins, although direct evidence is lacking. Major features of sepsis-induced immune suppression include T-cell dysfunction, which is characterized by apoptosis of splenic T cells, increased CD4(+)Foxp3(+) regulatory T cells (Tregs), and suppression of type 1 helper T-cell response [e.g., interferon-γ (IFN-γ) secretion] in mice. Here, we show that the induction of sepsis by cecal ligation and puncture (CLP) resulted in increases in farnesyltransferase activity and farnesylated proteins in the spleen relative to sham operation. Treatment with farnesyltransferase inhibitor N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-phenylbenzoyl]methionine methyl ester trifluoroacetate salt (FTI-277) (25 mg/kg b.wt. i.p.) at 2 h after CLP blocked the increase in farnesylated proteins and improved survival and bacterial clearance of septic mice. FTI-277 reverted to or mitigated sepsis-induced apoptosis in spleen and thymus, increased splenic CD4(+)Foxp3(+) Tregs, and suppressed IFN-γ secretion and proliferation of splenocytes in response to anti-CD3+CD28 antibodies in mice. Moreover, FTI-277 promoted macrophage phagocytotic activity in septic mice. These results indicate that elevation in protein farnesylation plays a role in derangements in immune function and mortality of septic mice. These findings suggest that prevention of immune dysfunction might contribute to FTI-277-induced improvement in survival of septic mice. These data highlight protein farnesyltransferase as a novel potential molecular target to reduce the mortality of patients with sepsis. Topics: Animals; Bacterial Load; Cecum; Cytokines; Drug Evaluation, Preclinical; Enzyme Inhibitors; Farnesyltranstransferase; Heart Function Tests; Hemodynamics; HMGB1 Protein; Lung; Male; Methionine; Mice; Mice, Inbred C57BL; Protein Prenylation; Sepsis; Spleen; T-Lymphocytes | 2011 |