fti-277 has been researched along with Prostatic-Neoplasms* in 3 studies
3 other study(ies) available for fti-277 and Prostatic-Neoplasms
Article | Year |
---|---|
Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells.
The mevalonate synthesis pathway produces intermediates for isoprenylation of small GTPases, which are involved in the regulation of actin cytoskeleton and cell motility. Here, we investigated the role of the prenylation transferases in the regulation of the cytoskeletal organization and motility of PC-3 prostate cancer cells. This was done by using FTI-277, GGTI-298 or NE-10790, the specific inhibitors of FTase (farnesyltransferase), GGTase (geranylgeranyltransferase)-I and -II, respectively. Treatment of PC-3 cells with GGTI-298 and FTI-277 inhibited migration and invasion in a time- and dose-dependent manner. This was associated with disruption of F-actin organization and decreased recovery of GFP-actin. Immunoblot analysis of various cytoskeleton-associated proteins showed that the most striking change in GGTI-298- and FTI-277-treated cells was a markedly decreased level of total and phosphorylated cofilin, whereas the level of cofilin mRNA was not decreased. The treatment of PC-3 cells with GGTI-298 also affected the dynamics of GFP-paxillin and decreased the levels of total and phosphorylated paxillin. The levels of phosphorylated FAK (focal adhesion kinase) and PAK (p-21-associated kinase)-2 were also lowered by GGTI-298, but levels of paxillin or FAK mRNAs were not affected. In addition, GGTI-298 had a minor effect on the activity of MMP-9. RNAi knockdown of GGTase-Ibeta inhibited invasion, disrupted F-actin organization and decreased the level of cofilin in PC-3 cells. NE-10790 did not have any effect on PC-3 prostate cancer cell motility or on the organization of the cytoskeleton. In conclusion, our results demonstrate the involvement of GGTase-I- and FTase-catalysed prenylation reactions in the regulation of cytoskeletal integrity and motility of prostate cancer cells and suggest them as interesting drug targets for development of inhibitors of prostate cancer metastasis. Topics: Actin Cytoskeleton; Actin Depolymerizing Factors; Actins; Alkyl and Aryl Transferases; Benzamides; Diphosphonates; Focal Adhesion Protein-Tyrosine Kinases; Humans; Male; Methionine; p21-Activated Kinases; Paxillin; Phosphorylation; Prostatic Neoplasms; Protein Prenylation; Pyridines; RNA Interference; Tumor Cells, Cultured | 2010 |
Synergistic activity of the histone deacetylase inhibitor suberoylanilide hydroxamic acid and the bisphosphonate zoledronic acid against prostate cancer cells in vitro.
Bisphosphonates are widely used agents for the treatment of malignant bone disease. They inhibit osteoclast-mediated bone resorption and can have direct effects on cancer cells. In this study, we investigated whether the anticancer activity of the third-generation bisphosphonate zoledronic acid (ZOL) could be enhanced by combination with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). We found that ZOL and SAHA cooperated to induce cell death in the prostate cancer cell lines LNCaP and PC-3. The effect was synergistic, as evidenced by combination index isobologram analysis. ZOL and SAHA synergized to induce dissipation of the mitochondrial transmembrane potential, to activate caspase-3, and to trigger DNA fragmentation, showing that the combination of ZOL and SAHA resulted in the initiation of apoptosis. Because ZOL acts by inhibiting the mevalonate pathway, thereby preventing protein prenylation, we explored whether the mevalonate pathway was also the target of the cooperative action of ZOL and SAHA. We found that geranylgeraniol, but not farnesol, significantly reduced ZOL/SAHA-induced cell death, indicating that the synergistic action of the agents was due to the inhibition of geranylgeranylation. Consistently, a direct inhibitor of geranylgeranylation, GGTI-298, synergized with SAHA to induce cell death, whereas an inhibitor of farnesylation, FTI-277, had no effect. In addition, SAHA synergized with mevastatin, an inhibitor of the proximal enzyme in the mevalonate pathway. These in vitro findings provide a rationale for an in vivo exploration into the potential of combining SAHA and ZOL, or other inhibitors of the mevalonate pathway, as an effective strategy for anticancer therapy. Topics: Antineoplastic Agents; Benzamides; Cell Death; Cell Line, Tumor; Diphosphonates; Drug Screening Assays, Antitumor; Drug Synergism; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Imidazoles; Lovastatin; Male; Methionine; Mitochondria; Prostatic Neoplasms; Vorinostat; Zoledronic Acid | 2007 |
Farnesyltransferase inhibitor effects on prostate tumor micro-environment and radiation survival.
Ras activation by mutation, overexpression, or receptor signaling can increase tumor cell survival after irradiation.. We examined whether inhibiting Ras activity with farnesyltransferase inhibitors (FTI) altered the radiosensitivity and tumor micro-environment in prostate tumors.. Treatment with FTIs L-744,832 or FTI-277 reduced clonogenic survival of prostate tumor cells expressing oncogenic H-ras after irradiation. PI3-kinase/Akt and MAPK signaling pathways were downregulated by FTIs in these cells. FTI treatment reduced tumor hypoxia and also reduced MMP-9 expression in tumors with activated mutant H-ras. FTI treatment did not, however, increase apoptosis in irradiated intestine, demonstrating that acute radiation injury of this normal tissue was not enhanced by FTIs.. FTIs can enhance the killing of prostate tumors with activated H-Ras. Together with the absence of increased acute toxicity to normal bowel, these results imply that FTI treatment should be further studied as a possible adjuvant to radiotherapy in the treatment of abdominal cancers with activated Ras signaling. Topics: Alkyl and Aryl Transferases; Animals; Apoptosis; Cell Line, Tumor; Enzyme Inhibitors; Farnesyltranstransferase; Genes, ras; Humans; Male; Matrix Metalloproteinase 9; Methionine; Mice; Mice, Nude; Mitogen-Activated Protein Kinases; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Radiation Tolerance; Radiation-Sensitizing Agents; Signal Transduction; Xenograft Model Antitumor Assays | 2005 |