fti-277 and Progeria

fti-277 has been researched along with Progeria* in 3 studies

Other Studies

3 other study(ies) available for fti-277 and Progeria

ArticleYear
Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture.
    Journal of proteomics, 2013, Oct-08, Volume: 91

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmna(G609G/G609G) knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.

    Topics: Adenosine Triphosphate; Adolescent; Amino Acids; Animals; Child; Diphosphonates; Female; Fibroblasts; Galactose; Gene Expression Regulation; Glucose; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Imidazoles; Lamin Type A; Male; Methionine; Mice; Mitochondria; Mutation; Nuclear Proteins; Oxygen Consumption; Pravastatin; Progeria; Protein Precursors; Proteomics; Skin; Zoledronic Acid

2013
Progeria, the nucleolus and farnesyltransferase inhibitors.
    Biochemical Society transactions, 2010, Volume: 38, Issue:Pt 1

    HGPS (Hutchinson-Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.

    Topics: Cell Nucleolus; Child; Chromosomal Proteins, Non-Histone; Clinical Trials as Topic; Enzyme Inhibitors; Farnesyltranstransferase; Humans; Lamin Type A; Methionine; Progeria

2010
Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation.
    Human molecular genetics, 2006, Aug-15, Volume: 15, Issue:16

    LMNA-associated progeroid syndromes have been reported with both recessive and dominant inheritance. We report a 2-year-old boy with an apparently typical Hutchinson-Gilford progeria syndrome (HGPS) due to compound heterozygous missense mutations (p.T528M and p.M540T) in LMNA. Both mutations affect a conserved region within the C-terminal globular domain of A-type lamins, defining a progeria hot spot. The nuclei of the patient showed no prelamin A accumulation. In general, the nuclear phenotype did not correspond to that previously described for HGPS. Instead, honeycomb figures predominated and nuclear blebs with reduced/absent expression of B-type lamins could be detected. The healthy heterozygous parents showed similar nuclear changes, although in a smaller percentage of nuclei. Treatment with a farnesylation inhibitor resulted in accumulation of prelamin A at the nuclear periphery, in annular nuclear membrane plaques and in intra/trans-nuclear membrane invaginations. In conclusion, these findings suggest a critical role for the C-terminal globular lamin A/C region in nuclear structure and support a major contribution of abnormal assembly to the progeroid phenotype. In contrast to earlier suggestions, we show that prelamin A accumulation is not the major determinant of the progeroid phenotype.

    Topics: Adult; Bone and Bones; Cell Survival; Cells, Cultured; Child, Preschool; Female; Fibroblasts; Heterozygote; Humans; Imaging, Three-Dimensional; Immunohistochemistry; Lamin Type A; Lovastatin; Male; Methionine; Models, Molecular; Mutation; Nuclear Proteins; Progeria; Protein Precursors; Protein Prenylation; Radiography

2006