fti-276 and Lung-Neoplasms

fti-276 has been researched along with Lung-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for fti-276 and Lung-Neoplasms

ArticleYear
Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf.
    Oncogene, 2003, Sep-18, Volume: 22, Issue:40

    Mutations in the Kras2 gene are seen in both human and mouse lung adenocarcinomas. The protein product (p21ras) encoded by the Kras2 gene must be post-translationally modified at a terminal CAAX motif in order to be biologically active. In this study, we systematically investigated the chemopreventive efficacy of two different farnesyltransferase inhibitors (FTIs): one is a peptidomimetic (FTI-276) and the other is an imidazole (L778-123). Both FTIs are designed to inhibit the post-translational modification of p21ras proteins with a terminal CAAX motif. In a complete chemoprevention study, where the inhibitor was administered before carcinogen was given, and throughout the study, FTI-276 treatment significantly reduced both the tumor multiplicity by 41.7% (P<0.005), and the total tumor volume by 79.4% (P<0.0001). In the late treatment study, where mice were treated with an inhibitor 12 to 20 weeks after carcinogen administration, FTI-276 treatment resulted in a 60% reduction in tumor multiplicity and 58% reduction in tumor volume. Next, we examined the chemopreventive efficacy of a new FTI, L-778,123, on lung tumor development in A/J mice and transgenic mice with a dominant-negative p53 mutation and/or heterozygous deletion of Ink4a/Arf. Treatment of mice with L-778,123 for a period of 10 weeks from 20 weeks to 30 weeks post carcinogen initiation resulted in an approximately 50% decrease in tumor multiplicity in wild-type mice and mice with a dominant-negative p53 mutation and/or heterozygous deletion of the Ink4a/Arf tumor suppressor genes. Interestingly, tumor volume was decreased approximately 50% in wild-type mice and in mice with an Ink4a/Arf heterozygous deletion, while tumor volume was decreased approximately 75% in animals with a dominant-negative p53 and in mice with both a p53 mutation and heterozygous deletion of Ink4a/Arf. This result suggests that FTI exhibited a significantly (P<0.05) more efficacious chemopreventive effect in animals with alterations of p53 and Ink4a/Arf as contrasted with wild-type mice. Thus, FTIs are potent lung chemopreventive agents in both A/J mice and transgenic mice harboring a dominant-negative p53 and heterozygous deletion of Ink4a/Arf. In fact, L-778,123 is more effective in inhibiting primary lung progression in mice with a p53 mutation and/or an Ink4a/Arf deletion than in wild-type animals.

    Topics: Adenocarcinoma; Alkyl and Aryl Transferases; Animals; Anticarcinogenic Agents; Cyclin-Dependent Kinase Inhibitor p16; Enzyme Inhibitors; Farnesyltranstransferase; Gene Deletion; Genes, Dominant; Genes, p53; Heterozygote; Imidazoles; Lung Neoplasms; Methionine; Mice; Mice, Inbred A; Mice, Knockout; Mice, Transgenic

2003
Effect of farnesyltransferase inhibitor FTI-276 on established lung adenomas from A/J mice induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
    Carcinogenesis, 2000, Volume: 21, Issue:1

    The Ras protein undergoes a series of post-translational modifications at the C-terminal CAAX motif, which culminates with the anchoring of p21 Ras to the plasma membrane where it relays growth regulatory signals from receptor tyrosine kinases to various pathways of cell signal transduction. FTI-276 is a CAAX peptidomimetic of the carboxyl terminal of Ras proteins. Pharmacokinetic analysis of FTI-276 in A/J mice with a time-release pellet system showed a dose of 50 mg/kg body wt achieved an average serum level of 1.68 microg/ml for up to 30 days following implantation. In the present study, 4 week old A/J mice were initiated with a single dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (100 mg/kg), and monitored for 18 weeks. Mice were grouped for daily delivery (time-release pellet) of 50 mg/kg of FTI-276 for 30 days (n = 12) and the control group (n = 12). Analysis of tumors from time-release pellet treated animals showed a 60% reduction in tumor multiplicity and a 42% reduction in tumor incidence. Moreover, FTI-276 treatment resulted in a significant reduction in tumor volume (approximately 58%). Mutation analysis of the lung tumors from both treatment groups revealed that most of the tumors harbored mutations in the codon 12 of K-ras and there is no significant difference in the incidence and types of mutations between tumors from the treated and control animals. This is the first demonstration of chemotherapeutic efficacy of a synthetic CAAX peptidomimetic farnesyltransferase inhibitor in a primary lung tumor model.

    Topics: Adenoma; Alkyl and Aryl Transferases; Animals; Antineoplastic Agents; Carcinogens; Enzyme Inhibitors; Genes, ras; Lung Neoplasms; Methionine; Mice; Mutation; Nitrosamines

2000
Chemopreventive efficacy of promising farnesyltransferase inhibitors.
    Experimental lung research, 2000, Volume: 26, Issue:8

    The studies presented were designed to test the efficacy of farnesyltransferase inhibitors (FTIs) as potential chemopreventive compounds in the mouse lung tumor model, and in tumor cell lines. The compounds included manumycin, gliotoxin, dihydroepiandrosterone (DHEA), perillyl alcohol (POH), and FTI-276. Each of these compounds had the potential, based on in vitro and limited in vivo evidence, to inhibit mouse lung tumorigenesis. In vitro studies were conducted with both K-ras-transformed NIH-3T3 cells and mouse lung tumor epithelial cell lines. We utilized 2 primary mouse lung tumor models that reliably produce lung tumors with an oncogenic K-ras mutation when induded by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK). Manumycin, gliotoxin, DHEA, and POH were administered 3 times per week peritoneally (i.p.), starting 1 week prior to carcinogen treatment, and throughout the test period (4.5 months). FTI-276 was delivered daily for 4 months by a time-release pellet method. Both the manumycin and gliotoxin treatment groups demonstrated 100% incidence and an increase in tumor multiplicity over control, of 66% and 58% increase respectively (P < .05). Although DHEA showed no significant chemopreventive effect, POH treatment demonstrated a 22% reduction in tumor incidence (P < .05) and a 58% reduction in tumor multiplicity (P < .05). Finally, FTI-276 reduced both the tumor multiplicity by 41.7% (P < .005), and the total tumor volume/burden per mouse by 79.4% (P < .0001). The apoptotic index in FTI-276-treated tumors showed an increase of 77% over control tumors (P < .05). In vitro, all compounds demonstrated growth inhibition at a dose-response manner; however, manumycin, gliotoxin, and DHEA demonstrated an initial increase in growth rate at lower doses. In summary, we have shown that POH and FTI-276 are chemopreventive in a primary mouse lung tumor model. In contrast, DHEA was not significantly chemopreventive at the dosage utilized, and treatment of an immunocompetent host with manumycin or gliotoxin demonstrated a significant increase in tumorigenicity over carcinogen control.

    Topics: 3T3 Cells; Adenoma; Alkyl and Aryl Transferases; Animals; Apoptosis; Chemoprevention; Dehydroepiandrosterone; Disease Models, Animal; DNA, Neoplasm; Dose-Response Relationship, Drug; Enzyme Inhibitors; Farnesyltranstransferase; Fluorescent Antibody Technique, Indirect; Gliotoxin; In Situ Nick-End Labeling; Lung Neoplasms; Methionine; Mice; Mice, Inbred A; Mice, Inbred C3H; Monoterpenes; Polyenes; Polymerase Chain Reaction; Polyunsaturated Alkamides; Proliferating Cell Nuclear Antigen; Terpenes

2000