fructooligosaccharide has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 7 studies
2 trial(s) available for fructooligosaccharide and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Design and rationale of the INSYTE study: A randomised, placebo controlled study to test the efficacy of a synbiotic on liver fat, disease biomarkers and intestinal microbiota in non-alcoholic fatty liver disease.
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of fat-related conditions ranging from simple fatty liver, to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. There is growing evidence that NAFLD is a multisystem disease, affecting several extra-hepatic organs and regulatory pathways. Furthermore, since the gut and liver are linked anatomically via the portal vein, disturbances of the gut microbiota (dysbiosis) can affect the liver.. In patients with NAFLD, we are testing the effects of a synbiotic which is the combination of a prebiotic (fructooligosaccharides; 4 g/day) and a probiotic (Bifidobacterium animalis subsp. lactis BB-12 at a minimum of 10 billion CFU/day) on a) liver fat percentage, b) NAFLD fibrosis algorithm scores, c) gut microbiota composition. Additionally, there will be several hypothesis-generating secondary outcomes to understand the metaorganismal pathways that influence the development and progression of NAFLD, type 2 diabetes, and cardiovascular risk.. In a randomised double-blind placebo-controlled trial, 104 participants were randomised to 10-14 months intervention with either synbiotic (n = 55) or placebo (n = 49). Recruitment was completed in April 2017 and the last study visit will be completed by April 2018.. Change in gut microbiota composition will be assessed using 16S ribosomal RNA gene sequencing. Change in mean liver fat percentage will be quantified by magnetic resonance spectroscopy (MRS). In addition, change in liver fat severity will be measured using two NAFLD fibrosis algorithm scores. The INSYTE study was approved by the local ethics committee (REC: 12/SC/0614) and is registered at www.clinicaltrials.gov as NCT01680640. Topics: Adipose Tissue; Bifidobacterium animalis; Biomarkers; Cardiovascular Diseases; Cultured Milk Products; Diabetes Mellitus, Type 2; Disease Progression; Double-Blind Method; Female; Gastrointestinal Microbiome; Gastrointestinal Tract; Gene Silencing; Genes, Microbial; Humans; Liver; Liver Cirrhosis; Magnetic Resonance Spectroscopy; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Oligosaccharides; RNA, Ribosomal, 16S; Synbiotics; Treatment Outcome | 2018 |
Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis.
Increased exposure to intestinal bacterial products may contribute to the pathogenesis of non alcoholic steatohepatitis (NASH). Bifidobacteria are predominant bacterial species in the human gut microbiota and have been considered to exert a beneficial effect on human health by maintaining the equilibrium of the resident microbiota.. To evaluate the effects of Bifidobacterium longum with fructo-oligosaccharides (Fos) in the treatment of NASH.. A total of 66 patients were randomly and equally divided into two groups receiving Bifidobacterium longum with Fos and lifestyle modification (i.e., diet and exercise) versus lifestyle modification alone. The following variables were assessed at -4 (beginning of the dietary lead-in period), 0 (randomization), 6, 12, 18, and 24 weeks: aspartate transaminase (AST), alanine transaminase (ALT), bilirubin, albumin, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, fasting plasma glucose, insulin, C-peptide, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, homeostasis model assessment of insulin resistance (HOMA-IR), and serum endotoxins. Liver biopsies were performed at entry and repeated after 24 weeks of treatment.. At the end of study period, we observed that the Bifidobacterium longum with Fos and lifestyle modification group versus the lifestyle modification alone group showed significant differences in the AST -69.6 versus -45.9 IU/mL (P < 0.05), LDL cholesterol -0.84 versus -0.18 mmol/L (P < 0.001), CRP -2.9 versus -0.7 mg/L (P < 0.05), TNF-α -0.45 versus -0.12 ng/mL (P < 0.001), HOMA-IR -1.1 versus -0.6 (P < 0.001), serum endotoxin -45.2 versus -30.6 pg/mL (P < 0.001), steatosis (P < 0.05), and the NASH activity index (P < 0.05).. Bifidobacterium longum with Fos and lifestyle modification, when compared to lifestyle modification alone, significantly reduces TNF-α, CRP, serum AST levels, HOMA-IR, serum endotoxin, steatosis, and the NASH activity index. Topics: Adult; Aged; Alanine Transaminase; Aspartate Aminotransferases; Bifidobacterium; C-Reactive Protein; Diet; Exercise; Fatty Liver; Female; Humans; Intestines; Life Style; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Oligosaccharides | 2012 |
5 other study(ies) available for fructooligosaccharide and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism.
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear.. In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs.. FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment.. FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD. Topics: Animals; Choline; Diet, High-Fat; Gastrointestinal Microbiome; Lipid Metabolism; Liver; Methionine; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease | 2023 |
Fructo-Oligosaccharides and Pectins Enhance Beneficial Effects of Raspberry Polyphenols in Rats with Nonalcoholic Fatty Liver.
In recent years, nonalcoholic fatty liver disorders have become one of the most common liver pathologies; therefore, it is necessary to investigate the dietary compounds that may support the regulation of liver metabolism and related inflammatory processes. The present study examines the effect of raspberry polyphenolic extract (RE) combined with fructo-oligosaccharides (FOSs) or pectins (PECs) on caecal microbial fermentation, liver lipid metabolism and inflammation in rats with fatty liver induced by an obesogenic diet. The combination of RE with FOSs or PECs reduced the production of short-chain fatty acids in the caecum. RE combined with FOSs exerted the most favourable effects on liver lipid metabolism by decreasing liver fat, cholesterol, triglyceride content and hepatic steatosis. RE and FOSs reduced lobular and portal inflammatory cell infiltration and IL-6 plasma levels. These effects might be related to a decrease in the hepatic expressions of PPARγ and ANGPTL4. In conclusion, PECs and FOSs enhanced the effects of RE against disorders related to nonalcoholic fatty liver; however, the most effective dietary treatment in the regulation of liver lipid metabolism and inflammation caused by an obesogenic diet was the combination of RE with FOSs. Topics: Angiopoietin-Like Protein 4; Animals; Cecum; Cholesterol; Diet, High-Fat; Fatty Acids, Volatile; Lipid Metabolism; Liver; Male; Non-alcoholic Fatty Liver Disease; Oligosaccharides; Pectins; Plant Extracts; Polyphenols; PPAR gamma; Rats; Rats, Wistar; Rubus; Triglycerides | 2021 |
A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota.
We investigated the effect of a high fructose diet (HFD) on Sprague Dawley rats and the impact of a synbiotic composed of Lactobacillus fermentum CECT5716 and fructooligosaccharides. Feeding the HFD for 5 weeks resulted in liver steatosis and insulin resistance but not obesity. These changes were associated with increased production of short-chain fatty acids and increased Bacteroidetes in feces, with an augmented Bacteroidetes/Firmicutes ratio, among other changes in the microbiota. In addition, barrier function was weakened, with increased LPS plasma levels. These data are consistent with increased fructose availability in the distal gut due to saturation of absorptive mechanisms, leading to dysbiosis, endotoxemia, hepatic steatosis, and insulin resistance. Treatment with the synbiotic prevented some of the pathological effects, so that treated rats did not develop steatosis or systemic inflammation, while dysbiosis and barrier function were greatly ameliorated. In addition, the synbiotic had hypolipidemic effects. The synbiotic composed by L. fermentum CECT5716 and fructooligosaccharides has beneficial effects in a model of metabolic syndrome induced by a HFD, suggesting it might be clinically useful in this type of condition, particularly considering that high fructose intake has been related to metabolic syndrome in humans. Topics: Animals; Diet; Disease Models, Animal; Fatty Acid-Binding Proteins; Fatty Acids, Volatile; Fructose; Gastrointestinal Microbiome; Insulin Resistance; Limosilactobacillus fermentum; Male; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Oligosaccharides; Rats, Sprague-Dawley; Receptors, Adiponectin; Synbiotics | 2017 |
Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis.
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides. Topics: Animals; Choline Deficiency; Dietary Supplements; Disease Models, Animal; Intestines; Male; Methionine; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oligosaccharides; Prebiotics | 2017 |
Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways.
Recent data suggest that gut microbiota contributes to the regulation of host lipid metabolism. We report how fermentable dietary fructo-oligosaccharides (FOS) control hepatic steatosis induced by n-3 PUFA depletion, which leads to hepatic alterations similar to those observed in non-alcoholic fatty liver disease patients.. C57Bl/6J mice fed an n-3 PUFA-depleted diet for 3 months were supplemented with FOS during the last 10 days of treatment. FOS-treated mice exhibited higher caecal Bifidobacterium spp. and lower Roseburia spp. content. Microarray analysis of hepatic mRNA revealed that FOS supplementation reduced hepatic triglyceride accumulation through a proliferator-activated receptor α-stimulation of fatty acid oxidation and lessened cholesterol accumulation by inhibiting sterol regulatory element binding protein 2-dependent cholesterol synthesis. Cultured precision-cut liver slices confirmed the inhibition of fatty acid oxidation. FOS effects were related to a decreased hepatic micro-RNA33 expression and to an increased colonic glucagon-like peptide 1 production.. The changes in gut microbiota composition by n-3 PUFA-depletion and prebiotics modulate hepatic steatosis by changing gene expression in the liver, a phenomenon that could implicate micro-RNA and gut-derived hormones. Our data underline the advantage of targeting the gut microbiota by colonic nutrients in the management of liver disease. Topics: Animals; Bifidobacterium; Cholesterol; Dietary Supplements; Energy Intake; Fatty Acids, Omega-3; Fatty Liver; Gastrointestinal Tract; Gene Expression Regulation; Glucagon-Like Peptide 1; Lipid Metabolism; Liver; Male; Metagenome; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oligosaccharides; Oxidative Stress; PPAR alpha; Prebiotics; Sterol Regulatory Element Binding Protein 1; Sterol Regulatory Element Binding Protein 2; Transcription Factors | 2013 |