fosbretabulin and Prostatic-Neoplasms

fosbretabulin has been researched along with Prostatic-Neoplasms* in 4 studies

Trials

1 trial(s) available for fosbretabulin and Prostatic-Neoplasms

ArticleYear
Phase Ib trial of radiotherapy in combination with combretastatin-A4-phosphate in patients with non-small-cell lung cancer, prostate adenocarcinoma, and squamous cell carcinoma of the head and neck.
    Annals of oncology : official journal of the European Society for Medical Oncology, 2012, Volume: 23, Issue:1

    The vascular disrupting agent combretastatin-A4-phosphate (CA4P) demonstrated antitumour activity in preclinical studies when combined with radiation.. Patients with non-small-cell lung cancer (NSCLC), prostate adenocarcinoma, and squamous cell carcinoma of the head and neck (SCCHN) received 27 Gy in 6 fractions treating twice weekly over 3 weeks, 55 Gy in 20 fractions over 4 weeks, and 66 Gy in 33 fractions over 6 weeks respectively. CA4P was escalated from 50 mg/m2 to 63 mg/m2. CA4P exposure was further increased from one to three to six doses. Patients with SCCHN received cetuximab in addition.. Thirty-nine patients received 121 doses of CA4P. Dose-limiting toxic effects (DLTs) of reversible ataxia and oculomotor nerve palsy occurred in two patients with prostate cancer receiving weekly CA4P at 63 mg/m2. DLT of cardiac ischaemia occurred in two patients with SCCHN at a weekly dose of 50 mg/m2 in combination with cetuximab. Three patients developed grade 3 hypertension. Responses were seen in 7 of 18 patients with NSCLC. At 3 years, 3 of 18 patients with prostate cancer had prostate-specific antigen relapse.. Radiotherapy with CA4P appears well tolerated in most patients. The combination of CA4P, cetuximab, and radiotherapy needs further scrutiny before it can be recommended for clinical studies.

    Topics: Adenocarcinoma; Aged; Aged, 80 and over; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Chemoradiotherapy; Dose-Response Relationship, Drug; Female; Head and Neck Neoplasms; Humans; Lung Neoplasms; Male; Middle Aged; Prostatic Neoplasms; Squamous Cell Carcinoma of Head and Neck; Stilbenes

2012

Other Studies

3 other study(ies) available for fosbretabulin and Prostatic-Neoplasms

ArticleYear
Molecular Engineering-Based Aptamer-Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Targeted Cancer Therapy.
    Angewandte Chemie (International ed. in English), 2019, 08-19, Volume: 58, Issue:34

    Polytherapy (or drug combination cancer therapy (DCCT)), targeting multiple mechanisms associated with tumor proliferation, can efficiently maximize therapeutic efficacy, decrease drug dosage, and reduce drug resistance. However, most DCCT strategies cannot coordinate the specific delivery of a drug combination in an accurately tuned ratio into cancer cells. To address these limitations, the present work reports the engineering of circular bivalent aptamer-drug conjugates (cb-ApDCs). The cb-ApDCs exhibit high stability, specific recognition, excellent cellular uptake, and esterase-triggered release. Furthermore, the drug ratios in cb-ApDCs can be tuned for an enhanced synergistic effect without the need for complex chemistry. Therefore, cb-ApDCs provide a promising platform for the development of DCCT strategies for different drug combinations and ratios.

    Topics: Antineoplastic Agents; Aptamers, Nucleotide; Camptothecin; Dasatinib; Drug Carriers; Drug Delivery Systems; Humans; Male; Molecular Targeted Therapy; Paclitaxel; Prostatic Neoplasms; Stilbenes; Tumor Cells, Cultured

2019
5'-Chloro-2,2'-dihydroxychalcone and related flavanoids as treatments for prostate cancer.
    European journal of medicinal chemistry, 2018, Sep-05, Volume: 157

    Several flavonoids and their biosynthetic precursor chalcones were designed and synthesized to improve the biological effects of the lead compound 2'-hydroxyflavonone against androgen receptor (AR)-dependent transcriptional stimulation. Newly synthesized chalcones 19 and 26 suppressed AR-dependent transcription as well as DHT-dependent growth stimulation at a low micromolar level. These compounds were also effective against ligand-independent constitutively active mutant AR derived from castration-resistant PCa (CRPC). Compounds 19 and 26 showed broad spectrum antiproliferative activity at 5-10 μM against multiple tumor cell lines including androgen-independent and taxane-resistant prostate cancer as well as a multidrug-resistant subline. Mode of action studies suggested that 19 induced sub-G1 accumulation in PC-3 cells by disrupting the microtubule network without affecting cell cycle progression. Furthermore, the in vivo effectiveness of chalcone 19 was confirmed in a xenograft model antitumor assay. Thus, chalcone 19 has the potential to be a bifunctional lead for treatment of AR-dependent PCa at lower doses as well as AR-independent PCa, including CRPC, at higher doses.

    Topics: Androgen Receptor Antagonists; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Chalcones; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Flavonoids; Humans; Male; Mice; Mice, SCID; Molecular Structure; Neoplasms, Experimental; Prostatic Neoplasms; Receptors, Androgen; Structure-Activity Relationship

2018
Synthesis of a 2-aryl-3-aroyl indole salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent.
    Journal of natural products, 2013, Sep-27, Volume: 76, Issue:9

    The natural products colchicine and combretastatin A-4 are potent inhibitors of tubulin assembly, and they have inspired the design and synthesis of a large number of small-molecule, potential anticancer agents. The indole-based molecular scaffold is prominent among these SAR modifications, leading to a rapidly increasing number of agents. The water-soluble phosphate prodrug 33 (OXi8007) of 2-aryl-3-aroylindole-based phenol 8 (OXi8006) was prepared by chemical synthesis and found to be strongly cytotoxic against selected human cancer cell lines (GI₅₀ = 36 nM against DU-145 cells, for example). The free phenol, 8 (OXi8006), was a strong inhibitor (IC₅₀ = 1.1 μM) of tubulin assembly. The corresponding phosphate prodrug 33 (OXi8007) also demonstrated pronounced interference with tumor vasculature in a preliminary in vivo study utilizing a SCID mouse model bearing an orthotopic PC-3 (prostate) tumor as imaged by color Doppler ultrasound. The combination of these results provides evidence that the indole-based phosphate prodrug 33 (OXi8007) functions as a vascular disrupting agent that may prove useful for the treatment of cancer.

    Topics: Animals; Antineoplastic Agents; Bibenzyls; Colchicine; Drug Screening Assays, Antitumor; Humans; Indoles; Inhibitory Concentration 50; Male; Mice; Molecular Structure; Organophosphates; Prodrugs; Prostatic Neoplasms; Stilbenes; Structure-Activity Relationship; Tubulin

2013
chemdatabank.com