fosbretabulin has been researched along with Pancreatic-Neoplasms* in 3 studies
3 other study(ies) available for fosbretabulin and Pancreatic-Neoplasms
Article | Year |
---|---|
Regulating the Anticancer Efficacy of Sgc8-Combretastatin A4 Conjugates: A Case of Recognizing the Significance of Linker Chemistry for the Design of Aptamer-Based Targeted Drug Delivery Strategies.
The unique merits of aptamers, including specificity, high binding affinity, easy cell internalization, and rapid tissue accumulation abilities, have led aptamer-drug conjugates to evolve into one of the most attractive strategies for targeted drug delivery purposes. Nevertheless, the critical role of linkers in regulating anticancer efficacy of these conjugates, especially those engineered by automated modular synthesis techniques, has been rarely explored. In this work, we utilized Sgc8c aptamer and combretastatin A4 to develop three conjugates with either a phosphodiester bond linker, a disulfide bond linker, or a carbamate linker to study their payload release mechanisms and the influence on anticancer efficacy. These investigations allowed us to identify the unique activation pathway of the phosphodiester bond linker that is activated by both nucleophilic attack of glutathione and degradation caused by phosphodiesterase, which is highly associated with the higher cytotoxicity of the conjugate. Importantly, the understanding of the chemistry of phosphodiester bond linker activation allowed us to further design another XQ-2d-CA4 conjugate that can induce pancreatic cancer cells apoptosis in a more efficient manner. Topics: Antineoplastic Agents; Apoptosis; Aptamers, Nucleotide; Drug Delivery Systems; Humans; Pancreatic Neoplasms; Stilbenes | 2021 |
New somatostatin-drug conjugates for effective targeting pancreatic cancer.
Pancreatic cancer poorly responds to available drugs, and finding novel approaches to target this cancer type is of high significance. Here, based on a common property of pancreatic cancer cells to express somatostatin receptors (SSTR), we designed drug conjugates with novel somatostatin-derived cyclic peptides (SSTp) with broad selectivity towards SSTR types to facilitate drug targeting of the pancreatic cancer cells specifically. Uptake of our newly designed SSTps was facilitated by SSTRs expressed in the pancreatic cancers, including SSTR2, SSTR3, SSTR4 and SSTR5. Three major drugs were conjugated to our best SSTps that served as delivery vehicles, including Camptothecin (CPT), Combretastatin-4A (COMB) and Azatoxin (AZA). All designed drug conjugates demonstrated penetration to pancreatic cancer cell lines, and significant toxicity towards them. Furthermore, the drug conjugates specifically accumulated in tumors in the animal xenograft model, though some accumulation was also seen in kidney. Overall these findings lay the basis for development of novel drug series that could target the fatal pancreatic cancer. Topics: Animals; Antineoplastic Agents; Camptothecin; Cell Line, Tumor; Cell Survival; Humans; Indoles; Kidney; Pancreatic Neoplasms; Peptides, Cyclic; Receptors, Somatostatin; Somatostatin; Stilbenes; Tissue Distribution; Xenograft Model Antitumor Assays | 2018 |
Vascular disrupting agent in pancreatic and hepatic tumour allografts: observations of location-dependent efficacy by MRI, microangiography and histomorphology.
Tumours growing in organs of different vascular environment could exhibit diverse responses to vascular disrupting agent (VDA). This study was aimed to identify in vivo imaging biomarkers for evaluation of pancreatic and hepatic tumours and comparison of their responses to a VDA Combretastatin A4 Phosphate (CA4P) using multiparametric MRI.. Male WAG/Rij rats were used for orthotopic pancreatic head tumour and hepatic tumour implantation; tumour growth was monitored by 3D isotropic MRI using a 3.0-T clinic scanner. Therapeutic intervention using CA4P was investigated by in vivo quantitative MRI measurements including T2/T1 relaxation mapping, diffusion kurtosis imaging and dynamic contrast-enhancement (DCE) imaging. Animals were scarified 10 h after CA4P treatment for ex vivo validation using microangiography and histomorphology.. State-of-the-art clinical MRI protocols were successfully adapted for imaging small animal tumour with high reliability. One hour after CA4P injection, marked vascular shutdown was detected with DCE MRI in both pancreatic and hepatic tumours. However, 10 h later, therapeutic necrosis was limited in pancreatic tumours compared with that in hepatic tumours (P<0.01). Heterogeneous therapeutic changes were depicted in tumour lesions using pixel-wise Tofts model, which was generated from dynamic T1 mapping. In addition, tumour responses including haemorrhage, oedema and necrosis were detected using quantitative T2/T1 relaxation maps and diffusion kurtosis images, and were validated using histomorphology.. Using multiparametric imaging biomarkers, hepatic tumours were found to be significantly more responsive to CA4P than pancreatic tumours, which could be of reference for designing future clinical trials on this agent. Topics: Allografts; Angiography; Animals; Antineoplastic Agents, Phytogenic; Image Processing, Computer-Assisted; Liver Neoplasms; Magnetic Resonance Imaging; Neovascularization, Pathologic; Pancreatic Neoplasms; Rats; Stilbenes | 2017 |