fosbretabulin has been researched along with Colorectal-Neoplasms* in 7 studies
7 other study(ies) available for fosbretabulin and Colorectal-Neoplasms
Article | Year |
---|---|
Targeted microbubbles carrying lipid-oil-nanodroplets for ultrasound-triggered delivery of the hydrophobic drug, combretastatin A4.
The hydrophobicity of a drug can be a major challenge in its development and prevents the clinical translation of highly potent anti-cancer agents. We have used a lipid-based nanoemulsion termed Lipid-Oil-Nanodroplets (LONDs) for the encapsulation and in vivo delivery of the poorly bioavailable combretastatin A4 (CA4). Drug delivery with CA4 LONDs was assessed in a xenograft model of colorectal cancer. LC-MS/MS analysis revealed that CA4 LONDs, administered at a drug dose four times lower than drug control, achieved equivalent concentrations of CA4 intratumorally. We then attached CA4 LONDs to microbubbles (MBs) and targeted this construct to VEGFR2. A reduction in tumor perfusion was observed in CA4 LONDs-MBs treated tumors. A combination study with irinotecan demonstrated a greater reduction in tumor growth and perfusion (P = 0.01) compared to irinotecan alone. This study suggests that LONDs, either alone or attached to targeted MBs, have the potential to significantly enhance tumor-specific hydrophobic drug delivery. Topics: Animals; Cell Line, Tumor; Colorectal Neoplasms; Humans; Hydrophobic and Hydrophilic Interactions; Lipids; Mice; Mice, Inbred BALB C; Mice, Nude; Microbubbles; Nanostructures; Stilbenes; Ultrasonography; Xenograft Model Antitumor Assays | 2021 |
An in vivo role for Rho kinase activation in the tumour vascular disrupting activity of combretastatin A-4 3-O-phosphate.
Combretastatin A-4 3-O-phosphate (CA4P) is in clinical trial as a tumour vascular disrupting agent (VDA) but the cause of blood flow disruption is unclear. We tested the hypothesis that activation of Rho/Rho kinase (ROCK) is fundamental to the effects of this drug in vivo.. Mouse models of human colorectal carcinoma (SW1222 and LS174T) were used. Effects of the ROCK inhibitor, Y27632, alone or in combination with CA4P, on ROCK activity, vascular function, necrosis and immune cell infiltration in solid tumours were determined. Mean arterial BP (MABP) was measured to monitor systemic interactions and the vasodilator, hydralazine, was used to control for the hypotensive effects of Y27632.. Y27632 caused a rapid drop in blood flow in SW1222 tumours, with recovery by around 3 h, which was paralleled by MABP changes. Y27632 pretreatment reduced CA4P-induced ROCK activation and partially blocked CA4P-induced tumour vascular effects, in both tumour types. Y27632 also partially inhibited CA4P-induced tumour necrosis and was associated with reduced immune cell infiltration in SW1222 tumours. Hydralazine caused a similar hypotensive effect as Y27632 but had no protective effect against CA4P treatment.. These results demonstrate that ROCK activity is critical for full manifestation of the vascular activity of CA4P in vivo, providing the evidence for pharmacological intervention to enhance the anti-tumour efficacy of CA4P and related VDAs. Topics: Amides; Animals; Antineoplastic Agents, Phytogenic; Blood Pressure; Colorectal Neoplasms; Female; Humans; Male; Mice, SCID; Peroxidase; Pyridines; rho-Associated Kinases; Stilbenes | 2014 |
1,1-Diarylalkenes as anticancer agents: dual inhibitors of tubulin polymerization and phosphodiesterase 4.
A series of 1,1-diarylalkene derivatives were prepared to optimize the properties of CC-5079 (1), a dual inhibitor of tubulin polymerization and phosphodiesterase 4 (PDE4). By using the 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore as one of the aromatic rings, a significant improvement in PDE4 inhibition was achieved. Compound 28 was identified as a dual inhibitor with potent PDE4 (IC(50)=54 nM) and antitubulin activity (HCT-116 IC(50)=34 nM and tubulin polymerization IC(50) ∼1 μM). While the nitrile group at the alkene terminus was generally required for potent antiproliferative activity, its replacement was tolerated if there was a hydroxyl or amino group on one of the aryl rings. Conveniently, this group could also serve as a handle for amino acid derivatization to improve the compounds' solubility. The glycinamide analog 45 showed significant efficacy in the HCT-116 xenograft model, with 64% inhibition of tumor growth upon dosing at 20 mg/kg qd. Topics: Alkenes; Animals; Antineoplastic Agents; Benzene Derivatives; Cell Proliferation; Colorectal Neoplasms; Cyclic Nucleotide Phosphodiesterases, Type 4; HCT116 Cells; Humans; Inhibitory Concentration 50; Magnetic Resonance Spectroscopy; Mice; Models, Molecular; Molecular Dynamics Simulation; Phosphodiesterase Inhibitors; Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2011 |
Vascular effects dominate solid tumor response to treatment with combretastatin A-4-phosphate.
Vascular-targeted therapeutics are increasingly used in the clinic. However, less is known about the direct response of tumor cells to these agents. We have developed a combretastatin-A-4-phosphate (CA4P) resistant variant of SW1222 human colorectal carcinoma cells to examine the relative importance of vascular versus tumor cell targeting in the ultimate treatment response. SW1222(Res) cells were generated through exposure of wild-type cells (SW1222(WT) ) to increasing CA4P concentrations in vitro. Increased resistance was confirmed through analyses of cell viability, apoptosis and multidrug-resistance (MDR) protein expression. In vivo, comparative studies examined tumor cell necrosis, apoptosis, vessel morphology and functional vascular end-points following treatment with CA4P (single 100 mg/kg dose). Tumor response to repeated CA4P dosing (50 mg/kg/day, 5 days/week for 2 weeks) was examined through growth measurement, and ultimate tumor cell survival was studied by ex vivo clonogenic assay. In vitro, SW1222(Res) cells showed reduced CA4P sensitivity, enhanced MDR protein expression and a reduced apoptotic index. In vivo, CA4P induced significantly lower apoptotic cell death in SW1222(Res) versus SW1222(WT) tumors indicating maintenance of resistance characteristics. However, CA4P-induced tumor necrosis was equivalent in both lines. Similarly, rapid CA4P-mediated vessel disruption and blood flow shut-down were observed in both lines. Cell surviving fraction was comparable in the two tumor types following single dose CA4P and SW1222(Res) tumors were at least as sensitive as SW1222(WT) tumors to repeated dosing. Despite tumor cell resistance to CA4P, SW1222(Res) response in vivo was not impaired, strongly supporting the view that vascular damage dominates the therapeutic response to this agent. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; ATP Binding Cassette Transporter, Subfamily B; Cell Line, Tumor; Colorectal Neoplasms; Drug Resistance, Neoplasm; Female; Humans; Mice; Mice, SCID; Neovascularization, Pathologic; Regional Blood Flow; Stilbenes; Xenograft Model Antitumor Assays | 2011 |
Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down.
Radioimmunotherapy using 131I-A5B7, an anti-CEA antibody, in combination with the vascular disrupting agent, combretastatin A4-phosphate (CA-4-P, 200 mg/kg), has produced tumor cures in SW1222 colorectal xenografts. CA-4-P causes acute tumor blood vessel shutdown, which can be monitored in clinical trials using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The purpose of this study was to determine the magnitude of the anti-vascular effect of CA-4-P in the SW1222 tumor, at 200 mg/kg and at lower, more clinically relevant doses, using conventional assays; relate effects to changes in DCE-MRI parameters and determine the corresponding effects on tumor retention of 131I-A5B7. The tumor vascular effects of 30, 100 and 200 mg/kg CA-4-P were determined, at 4- and 24-h post-treatment, using DCE-MRI, uptake of Hoechst 33342 for tumor vascular volume and conventional histology for necrosis. The effect of CA-4-P on tumor and normal tissue 131I-A5B7 retention was also determined. A significant reduction in tumor DCE-MRI kinetic parameters, the initial area under the contrast agent concentration time curve (IAUGC) and the transfer constant (Ktrans), was demonstrated at 4 h after CA-4-P, for all dose levels. These effects persisted for at least 24 h for the 200 mg/kg group but not for lower doses. A similar pattern was seen for vascular volume and necrosis. Despite this dose response, all three dose levels increased tumor retention of radio labeled antibody to a similar degree. These results demonstrate that moderate tumor blood flow reduction following antibody administration is sufficient to improve tumor antibody retention. This is encouraging for the combination of CA-4-P and 131I-A5B7 in clinical trials. Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Clinical Trials as Topic; Colorectal Neoplasms; Combined Modality Therapy; Drug Synergism; Humans; Iodine Radioisotopes; Kinetics; Magnetic Resonance Imaging; Mice; Necrosis; Neoplasm Transplantation; Radioimmunotherapy; Stilbenes; Time Factors | 2007 |
Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice.
Combretastatin A-4 phosphate (CA4-P) is an antivascular agent which inhibits tumour blood flow. The effects of CA4-P were studied at 1 and 24h in colorectal xenografts by the concomitant imaging of multiple physiological parameters (hypoxia, blood vessels and perfusion), selected to demonstrate changes related to vascular shut-down. Untreated tumours were viable, with perfused blood vessels throughout and only small areas of hypoxia. At 1h post-treatment, although blood vessels remained throughout the tumour, perfused vessels were mainly restricted to the rim. However, hypoxia was widespread in both peripheral and central parts of the tumour. Quantitative analysis also revealed a significant decrease in perfusion and a maximum increase in hypoxia at this time-point. Conversely, at 24h after treatment, when most of the tumour was necrotic, pathophysiological conditions in the surviving viable rim were already returning to normal: perfusion was increasing, and hypoxia was greatly reduced and restricted to regions bordering central necrosis. In conclusion, these data provide an insight into the actions by which CA4-P may exert its effects on solid tumours. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Cell Hypoxia; Colorectal Neoplasms; Fluorescent Antibody Technique; Humans; Mice; Mice, Nude; Neoplasm Transplantation; Stilbenes; Transplantation, Heterologous | 2005 |
Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model.
Combretastatin A4P (CA4P) is a prodrug that, in active form, binds to tubulin microtubules of capillary endothelial cells. Studies to date indicate it has significant activity as a specific tumor vascular targeting agent. The goals were to assess the effects of CA4P on tumor growth and microvasculature of colorectal liver metastases in the mouse model, using stereological and histological methods to measure tumor growth, and vascular corrosion casting and laser doppler flowmetry to assess effect on the microvasculature. Continuous s.c. infusion of CA4P produced a major reduction in tumor growth. The percentage of the liver occupied by metastases decreased from 20.55 +/- 13.3% in controls to 7.46 +/- 5.99% in treated animals (P = 0.03). Ultrastructural study of tumor microvasculature after a single dose of CA4P revealed marked effects 1 h after treatment. There was loss of patent microvessels at the normal liver-tumor interface. Central microvascular density was reduced, with constriction and tapering of vessels. CA4P appeared to cause no damage to normal liver tissue or vasculature. Tumor blood flow decreased from 37.6 +/- 13.9% in controls to 24.4 +/- 6.1% in tumors >5 mm in diameter, 1 h after treatment with CA4P (P < 0.03). Quantitative histology of tissue at 6 and 24 h after CA4P treatment showed a significant increase in tumor necrosis (48.7 +/- 21% and 55.5 +/- 19% compared with controls, 20.6 +/- 8%; P = 0.01). Continuous infusion with CA4P causes marked reduction in tumor volume. A single dose of CA4P causes major changes of the tumor microvasculature, reduction of tumor blood flow, and increase in tumor necrosis. CA4P has a potential role in the management of patients with liver metastases. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Division; Colorectal Neoplasms; Disease Models, Animal; Laser-Doppler Flowmetry; Liver Neoplasms; Male; Mice; Mice, Inbred CBA; Neovascularization, Pathologic; Stilbenes | 2001 |