forsythiaside has been researched along with Sepsis* in 3 studies
3 other study(ies) available for forsythiaside and Sepsis
Article | Year |
---|---|
Forsythiaside A ameliorates sepsis-induced acute kidney injury via anti-inflammation and antiapoptotic effects by regulating endoplasmic reticulum stress.
Sepsis is a systemic inflammatory response syndrome caused by an infection in the body, and accompanying acute kidney injury (AKI) is a common complication of sepsis. It is associated with increased mortality and morbidity. Forsythia Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a commonly used traditional Chinese medicine.. This study aimed to elucidate the protective effect of Forsythiaside A (FTA) on sepsis-induced AKI by downregulating inflammatory and apoptotic responses, and exploring its underlying mechanism.. Septic AKI was induced through intraperitoneal injection of LPS (10 mg/kg) using male C57BL/6 mice and pretreated with FTA or control saline. First, we assessed the degree of renal injury by creatinine, blood urea nitrogen measurement, and HE staining of renal tissue; secondly, the inflammation and apoptosis were measured byELISA, qPCR, and TUNEL immunofluorescence; finally, the mechanism was explored by computer molecular docking and Western blot.. Our data showed that FTA markedly attenuated pathological kidney injuries, alleviated the elevation of serum BUN and Creatinine, suggesting the renal protective effect of FTA. Notably, FTA significantly inhibited the renal expression of proinflammatory cytokine IL-1β, IL-6, and TNF-α both at protein and mRNA levels and attenuated cell apoptosis in the kidney, as measured by caspase-3 immunoblot and TUNEL assay, indicating its anti-Inflammation and antiapoptotic properties. Mechanistically, administration of LPS resulted in robust endoplasmic reticulum (ER) stress responses in the kidney, evidenced by glucose-regulated protein 78(GRP78) upregulation, protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation, eukaryotic initiation factor 2 alpha (elF2α) phosphorylation and C/EBP homologous protein (CHOP) overexpression, which could be significantly blocked by FTA pretreatment. Dynamic simulation and molecular docking were performed to provide further insight.. Collectively, our data suggest that FTA ameliorates sepsis-induced acute kidney injury via its anti-inflammation and antiapoptotic properties by regulating PERK signaling dependent ER stress responses. Topics: Acute Kidney Injury; Animals; Anti-Inflammatory Agents; Creatinine; Endoplasmic Reticulum Stress; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Sepsis | 2023 |
Forsythiaside A Alleviates Lipopolysaccharide-Induced Acute Liver Injury through Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation.
The liver is the primary site of inflammation caused by bacterial endotoxins in sepsis, and septic acute liver injury (SALI) is usually associated with poor outcomes in sepsis. Forsythiaside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory properties, antioxidant properties, and protective properties against neuroinflammation, sepsis, and edema. Therefore, the purpose of the present study was to examine FTA's potential effects on lipopolysaccharide (LPS)-induced SALI in mice. Our results indicated that pretreatment with FTA significantly attenuated aspartate aminotransferase (AST) and aminoleucine transferase (ALT) levels in plasma, ameliorated histopathological damage, inhibited hepatocyte apoptosis, diminished the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver from mice exposed to LPS. Furthermore, our data showed that the administration of LPS resulted in robust endoplasmic reticulum (ER) stress response, as evidenced by glucose-regulated protein 78 (GRP78) upregulation, phosphorylated-protein kinase R-like ER kinase (p-PERK) activation, elF2α phosphorylation, and activating transcription factor 4 (ATF4) and CHOP overexpression in the liver. This, in turn, led to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, including the cleavage of caspase-1, secretion of IL-1β, and pyroptotic cell death in the liver specimens. Importantly, the ER stress response induced by the LPS challenge was blocked by FTA administration. Correspondingly, NLRP3 inflammasome activation was significantly ameliorated by the pretreatment with FTA. Thus, we demonstrated that FTA pretreatment could protect mice from LPS-induced SALI, and its protective effects were possibly mediated by inhibiting ER stress response and subsequent NLRP3 inflammasome activation. Topics: Animals; Endoplasmic Reticulum Stress; Inflammasomes; Lipopolysaccharides; Liver; Mice; NLR Family, Pyrin Domain-Containing 3 Protein; Sepsis; Tumor Necrosis Factor-alpha | 2023 |
[Protective effect of forsythiaside A on acute lung injury in septic rats].
To observe the protective effect of forsythiaside A on acute lung injury (ALI) in septic rats.. Male Sprague-Dawley (SD) rats were randomly divided into normal control group, sham operation group, sepsis model group, and forsythiaside A intervention group, with 10 rats in each group. The rats in the normal control group did not receive any intervention; the rats in the sham operation group only underwent abdominal surgery; and those in the model group and forsythiaside A intervention group received cecal ligation and puncture (CLP) to establish the sepsis rat model. The rats in the forsythiaside A intervention group were given 75 mL/kg of forsythiaside A within 0.5 hour after operation, and repeated after 6 hours. The rats in the sham operation group and model group were given the same amount of normal saline at the same time points. The lung tissues were collected for pathological examination 12 hours after operation. The lung homogenate was prepared, and enzyme-linked immunosorbent assay (ELISA) was used to detect tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6). The activity of superoxide dismutase (SOD) was detected by xanthine oxidase method, and the content of malonaldehyde (MDA) was detected by colorimetry. The expression of nuclear factor-κB p65 (NF-κB p65) was detected by Western blotting.. There was no significant pathological change of lung tissue in both normal control group and sham operation group, and there was no significant difference in each parameter between the two groups. The rats in the model group had interstitial infiltration of inflammatory cells, alveolar structure destruction, alveolar septum thicken, extensive alveolar hemorrhage, telangiectasia; the levels of TNF-α, IL-1β, IL-6, MDA and NF-κB p65 protein expression in lung tissue were significantly higher than those in the normal control group and sham operation group [TNF-α (ng/L): 132.81±16.15 vs. 45.08±5.98, 46.10±6.72, IL-1β (ng/L): 137.32±15.22 vs. 51.03±7.89, 50.92±8.13; IL-6 (ng/L): 138.39±14.28 vs. 51.68±7.03, 52.48±7.36; MDA (kU/g): 1.79±0.13 vs. 0.96±0.05, 0.97±0.05; NF-κB p65 protein (NF-κB p65/GAPDH): 2.82±0.23 vs. 1.76±0.12, 1.82±0.13; all P < 0.05], the activity of SOD decreased significantly (kU/g: 45.90±5.46 vs. 92.11±10.13, 93.36±10.56, both P < 0.05). The changes in lung histopathology in the forsythiaside A intervention group were obviously improved as compared with the model group, which showed less inflammatory cell infiltration, less alveolar septum thickening, less bleeding and more intact structures; the levels of TNF-α, IL-1β, IL-6, MDA and the expression of NF-κB p65 protein in lung tissue were significantly lower than those in the model group [TNF-α (ng/L): 72.48±9.78 vs. 132.81±16.15, IL-1β (ng/L): 83.85±12.46 vs. 137.32±15.22, IL-6 (ng/L): 81.88±11.89 vs. 138.39±14.28, MDA (kU/L): 1.29±0.09 vs. 1.79±0.13, NF-κB p65 protein (NF-κB p65/GAPDH): 2.29±0.19 vs. 2.82±0.23, all P < 0.05], SOD activity increased significantly (kU/g: 66.03±7.98 vs. 45.90±5.46, P < 0.05).. Forsythiaside A can effectively alleviate ALI in septic rats. The mechanism may be related to down-regulate the expression of NF-κB p65 and reduce the level of inflammatory factors and free radicals in lung tissue, thereby against acute lung injury in septic rats. Topics: Acute Lung Injury; Animals; Glycosides; Interleukin-6; Male; NF-kappa B; Rats; Rats, Sprague-Dawley; Sepsis; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2022 |