formycins and Leukemia--Lymphoid
formycins has been researched along with Leukemia--Lymphoid* in 2 studies
Other Studies
2 other study(ies) available for formycins and Leukemia--Lymphoid
Article | Year |
---|---|
Synthesis and biological evaluation of certain 3-beta-D-ribofuranosyl-1,2,4-triazolo[4,3-b)pyridazines related to formycin prepared via ring closure of pyridazine precursors.
All three amino-substituted 3-beta-D-ribofuranosyl-1,2,4-triazolo[4,3-b]pyridazines (5, 19, and 20) structurally related to formycin A were prepared and tested for their antitumor and antiviral activity in cell culture. Dehydrative coupling of 4-amino-5-chloro-3-hydrazinopyridazine (7) with 3,4,6-tri-O-benzoyl-2,5-anhydro-D-allonic acid (6) in the presence of DCC and subsequent thermal ring closure of the reaction product (8) provided 8-amino-7-chloro-3-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)- triazolo[4,3-b]pyridazine (9). Dehalogenation of 9, followed by debenzoylation, gave the formycin congener 8-amino-3-beta-D-ribofuranosyl-1,2,4- triazolo[4,3-b]pyridazine (5). Similar condensation of 5-amino-4-chloro-3-hydrazinopyridazine (13) with 6 and dehalogenation of the cyclized product (16), followed by debenzoylation, gave the isomeric 7-amino-3-beta-D-ribofuranosyl-1,2,4- triazolo[4,3-b]pyridazine (19). DCC-mediated coupling of 6 with 6-chloro-3-hydrazinopyridazine (12), followed by ammonolysis of the cyclized product (21) with liquid NH3, provided a convenient route to 6-amino-3-beta-D-ribofuranosyl-1,2,4-triazolo[4,3-b]pyridazine (20). The structural assignment of 5 was made by single-crystal X-ray diffraction analysis. Compounds 5, 19, 20, and certain deprotected nucleoside intermediates were evaluated against L1210, WI-L2, and CCRF-CEM tumor cell lines, as well as against DNA and RNA viruses in culture. These compounds did not exhibit any significant antitumor or antiviral activity in vitro. Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Agents; Antiviral Agents; Chemical Phenomena; Chemistry; DNA Viruses; Formycins; Humans; Leukemia L1210; Leukemia, Lymphoid; Mice; Molecular Conformation; Pyridazines; RNA Viruses; Tumor Cells, Cultured | 1989 |
Inhibitors of purine nucleoside phosphorylase: effects of 9-deazapurine ribonucleosides and synthesis of 5'-deoxy-5'-iodo-9-deazainosine.
9-Deazapurine ribonucleosides constitute a new class of noncleavable purine nucleoside phosphorylase inhibitors that have at least 30-fold greater affinity for the enzyme than the corresponding C-nucleosides of the formycin B series. 9-Deazaguanosine, 9-deazainosine, and 5'-deoxy-5'-iodo-9-deazainosine competitively inhibited human erythrocytic purine nucleoside phosphorylase with Ki values of 29, 20, and 1.8 X 10(-7) M. The last compound is the most potent nucleoside inhibitor of the enzyme presently available and its synthesis is described. In contrast, 7,9-dideaza-7-thiainosine is a very weak inhibitor of the enzyme. When tested as an inhibitor of 2'-deoxyguanosine phosphorolysis in intact human erythrocytes and MOLT-3 human T-cell lymphoblastic leukemia cells, 5'-deoxy-5'-iodo-9-deazainosine was equipotent with 8-aminoguanosine (which is a precursor for 8-aminoguanine, Ki = 2 X 10(-7) M). Similarly, 5'-deoxy-5'-iodo-9-deazainosine and 8-aminoguanosine both potentiated the growth inhibition of human T-lymphocytic MOLT-3 cells by 2'-deoxyguanosine, reducing the 50% inhibitory concentration from approximately 2 X 10(-5) to approximately 2 X 10(-6) M. Topics: Cell Line; Deoxyguanosine; Erythrocytes; Formycins; Guanine; Guanosine; Humans; Inosine; Leukemia, Lymphoid; Pentosyltransferases; Purine Nucleosides; Purine-Nucleoside Phosphorylase; Structure-Activity Relationship | 1986 |