fmrfamide and Hypotension

fmrfamide has been researched along with Hypotension* in 2 studies

Other Studies

2 other study(ies) available for fmrfamide and Hypotension

ArticleYear
Hypotensive effect of novel chimeric peptides of met-enkephalin and FMRFa.
    Regulatory peptides, 2005, Feb-15, Volume: 125, Issue:1-3

    Endogenous opioid peptides like endomorphins, met-enkephalin and NPFF/FMRFamide family of neuropeptides, besides playing a role in modulation of antinociception, also affect cardiovascular system. Based on MERF, which consists of overlapping sequences of FMRFa and met-enkephalin, two chimeric peptides YGGFMKKKFMRFamide (YFa) and [D-Ala2] YAGFMKKKFMRFamide ([D-Ala2] YFa) were designed and synthesized. In this study, effect of YFa and [D-Ala2] YFa on arterial blood pressure and heart rate was evaluated in anaesthetized rats. Both YFa and [D-Ala2] YFa showed a dose-dependent fall in mean arterial pressure in dose-range of 13-78 micromol/kg. After naloxone treatment (5 mg/kg), vasodepressor effect of [D-Ala2] YFa and YFa was only partially blocked as compared to met-enkephalin. Partial blockade of vasodepressive effect of YFa and [D-Ala2] YFa by naloxone may be attributed to interaction of these chimeric peptides with receptors other than naloxone-sensitive receptors such as anti-opioid receptors, adrenergic receptors and D-analogue receptors.

    Topics: Animals; Blood Pressure; Dose-Response Relationship, Drug; Enkephalin, Methionine; Enkephalins; FMRFamide; Heart Rate; Hypotension; Male; Naloxone; Neuropeptides; Peptides; Rats; Rats, Wistar; Receptors, Adrenergic; Receptors, Opioid; Vasodilator Agents

2005
Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors.
    European journal of pharmacology, 2003, Sep-23, Volume: 477, Issue:3

    In rats subjected to myocardial ischemia/reperfusion, melanocortin peptides, including gamma(1)-melanocyte-stimulating hormone (gamma(1)-MSH), are able to exert a protective effect by stimulating brain melanocortin MC(3) receptors. A non-melanocortin receptor belonging to a group of receptors for Phe-Met-Arg-Phe-NH(2) (FMRFamide)-like peptides may be involved in some of the cardiovascular effects of the gamma-MSHs. FMRFamide-like peptides and gamma(1)-/gamma(2)-MSH share, among other things, the C-terminal Arg-Phe sequence, which seems to be essential for cardiovascular effects in normal animals. So we aimed to further investigate which receptor and which structure are involved in the protective effects of melanocortins in anesthetized rats subjected to myocardial ischemia by ligature of the left anterior descending coronary artery (5 min), followed by reperfusion. In saline-treated rats, reperfusion induced, within a few seconds, a high incidence of ventricular tachycardia and ventricular fibrillation, and a high percentage of death within the 5 min of observation period. Reperfusion was associated with a massive increase in free radical blood levels and with an abrupt and marked fall in systemic arterial pressure. The i.v. treatment (162 nmol/kg) during the ischemic period with the adrenocorticotropin fragment 1-24 [ACTH-(1-24): the reference protective melanocortin which binds all melanocortin receptors], as well as with both the melanocortin MC(3) receptor agonists gamma(2)-MSH and [D-Trp(8)]gamma(2)-MSH, reduced the incidence of ventricular tachycardia, ventricular fibrillation and death, the increase in free radical blood levels and the fall in arterial pressure. On the contrary, gamma(2)-MSH-(6-12) (a fragment unable to bind melanocortin receptors) was ineffective. Such protective effect was prevented by the melanocortin MC(3)/MC(4) receptor antagonist SHU 9119. In normal (i.e., not subjected to myocardial ischemia/reperfusion) rats, the same i.v. dose (162 nmol/kg) of gamma(2)-MSH, [D-Trp(8)]gamma(2)-MSH and gamma(2)-MSH-(6-12) provoked a prompt and transient increase in arterial pressure; on the other hand, ACTH-(1-24), which lacks the C-terminal Arg-Phe sequence, decreased arterial pressure, but only at higher doses. Heart rate of normal rats was not affected by any of the assayed peptides. The present data confirm and extend our previous findings that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC(3) receptors

    Topics: alpha-MSH; Animals; Coronary Disease; Cosyntropin; Female; FMRFamide; gamma-MSH; Hypotension; Injections, Intravenous; Lidocaine; Male; Melanocyte-Stimulating Hormones; Myocardial Reperfusion Injury; Rats; Rats, Wistar; Receptor, Melanocortin, Type 3; Signal Transduction; Tachycardia, Ventricular; Time Factors; Ventricular Fibrillation

2003