fluvoxamine has been researched along with Tardive-Dyskinesia* in 1 studies
1 other study(ies) available for fluvoxamine and Tardive-Dyskinesia
Article | Year |
---|---|
The effects of sigma-1 agonist fluvoxamine on experimental induced tardive dyskinesia model in rats.
Tardive dyskinesia (TD) is a persistent involuntary complex movement disorder that is known to occur with long-term antipsychotic treatment. Despite being a well-recognized complication of this treatment, its symptoms are often masked by the antipsychotic agents, only to become apparent upon reducing or terminating the treatment. In an effort to advance our understanding of TD pathophysiology and to identify potential therapies, the current study aimed to establish an animal model of TD by administering haloperidol to rats and to evaluate the efficacy of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), in ameliorating TD symptoms. The study compared the behavioral and biochemical parameters of rats that were treated with either fluvoxamine, tetrabenazine, haloperidol, or saline (control group). The biochemical parameters of interest included the brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), superoxide dismutase (SOD), and malondialdehyde (MDA). To achieve the study objectives, 32 male Wistar Albino rats were assigned to four different groups. The control group received physiological saline for six weeks. The haloperidol group received 1 mg/kg/ip haloperidol for the first three weeks, followed by two weeks of saline. The haloperidol+fluvoxamine group received 1 mg/kg/ip haloperidol for the first three weeks, followed by 30 mg/kg/ip fluvoxamine. The haloperidol+tetrabenazine group was administered 1 mg/kg/ip haloperidol for the first three weeks, followed by 5 mg/kg/ip tetrabenazine. Behavioral assessments of the rats were performed by measuring vacuous chewing movements. Subsequently, samples were collected from the hippocampus, striatum, and frontal lobe tissues of the rats, and BDNF, NGF, SOD, and MDA levels were measured. The results of the study demonstrated significant differences between the groups with respect to behavioral observations. Furthermore, SOD levels in the hippocampus, as well as BDNF, NGF, and SOD levels in the striatum of the haloperidol+fluvoxamine group were significantly higher than those observed in the haloperidol group. Conversely, MDA levels in the hippocampus were significantly lower in the haloperidol+fluvoxamine group than in the haloperidol group. These findings provide evidence of the beneficial effects of fluvoxamine, acting as a sigma-1 agonist, in treating TD symptoms induced experimentally. The observed benefits were supported by the biochemical investigations performed on brain tissu Topics: Animals; Antipsychotic Agents; Brain-Derived Neurotrophic Factor; Dyskinesias; Fluvoxamine; Haloperidol; Male; Nerve Growth Factor; Rats; Rats, Wistar; Superoxide Dismutase; Tardive Dyskinesia; Tetrabenazine | 2023 |