florbenazine-f-18 has been researched along with Disease-Models--Animal* in 6 studies
6 other study(ies) available for florbenazine-f-18 and Disease-Models--Animal
Article | Year |
---|---|
[
Lactacystin has been used to establish rodent models of Parkinson disease (PD), with cerebral α-synuclein inclusions. This study evaluated the uptake of [. Adult male Sprague-Dawley rats were randomly treated with a single intracranial dose of lactacystin (2 or 5 μg) or saline (served as the sham control) into the left medial forebrain bundle. A 30-min static [. Both the 2- and 5-μg lactacystin-treated groups exhibited significantly decreased specific [. In this PD model, lactacystin-induced dopaminergic terminal damage in the ipsilateral striatum could be clearly visualized through in vivo [ Topics: Acetylcysteine; Animals; Brain; Disease Models, Animal; Fluorine Radioisotopes; Image Processing, Computer-Assisted; Male; Parkinson Disease; Rats; Rats, Sprague-Dawley; Tetrabenazine | 2017 |
Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson's disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging.
18F-9-Fluoropropyl-(+)-dihydrotetrabenazine [18F-FP-(+)-DTBZ] positron emission tomography (PET) has been shown to detect dopaminergic neuron loss associated with Parkinson's disease (PD) in human and neurotoxin-induced animal models. A polyphenol compound, magnolol, was recently proposed as having a potentially restorative effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 6-hydroxydopamine-treated animal models. In this study, 18F-FP-(+)-DTBZ PET was used to determine the therapeutic efficacy of magnolol in an MPTP-PD mouse model that was prepared by giving an intraperitoneally (i.p.) daily dose of 25 mg/kg MPTP to male C57BL/6 mice for 5 consecutive days. Twenty-minute static 18F-FP-(+)-DTBZ PET scans were performed before MPTP treatment and 5 days after the termination of MPTP treatment to set up the baseline control. Half of the MPTP-treated mice then received a daily dose of magnolol (10 mg/kg dissolved in corn oil, i.p.) for 6 days. 18F-FP-(+)-DTBZ PET imaging was performed the day after the final treatment. All 18F-FP-(+)-DTBZ PET images were analysed and the specific uptake ratio (SUr) was calculated. Ex vivo autoradiography (ARG) and corresponding immunohistochemistry (IHC) studies were conducted to confirm the distribution of dopaminergic terminals in the striatum. The striatal SUr ratios of 18F-FP-(+)-DTBZ PET images for the Sham, the MPTP, and the MPTP + Magnolol-treated groups were 1.25 ± 0.05, 0.75 ± 0.06, and 1.00 ± 0.11, respectively (n = 4 for each group). The ex vivo 18F-FP-(+)-DTBZ ARG and IHC results correlated favourably with the PET imaging results. 18F-FP-(+)-DTBZ PET imaging suggested that magnolol post-treatment may reverse the neuronal damage in the MPTP-lesioned PD mice. In vivo imaging of the striatal vesicular monoamine transporter type 2 (VMAT2) distribution using 18F-FP-(+)-DTBZ animal PET is a useful method to evaluate the efficacy of therapeutic drugs i.e., magnolol, for the management of PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Biphenyl Compounds; Corpus Striatum; Disease Models, Animal; Fluorine Radioisotopes; Humans; Lignans; Mice; Neurons; Parkinson Disease; Parkinson Disease, Secondary; Positron-Emission Tomography; Tetrabenazine; Vesicular Monoamine Transport Proteins | 2017 |
Progressive loss of striatal dopamine terminals in MPTP-induced acute parkinsonism in cynomolgus monkeys using vesicular monoamine transporter type 2 PET imaging ([(18)F]AV-133).
The 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)-induced parkinsonism model, particularly in non-human primates, remains the gold-standard for studying the pathogenesis and assessing novel therapies for Parkinson's disease. However, whether the loss of dopaminergic neurons in this model is progressive remains controversial, mostly due to the lack of objective in vivo assessment of changes in the integrity of these neurons. In the present study, parkinsonism was induced in cynomolgus monkeys by intravenous administration of MPTP (0.2 mg/kg) for 15 days; stable parkinsonism developed over 90 days, when the symptoms were stable. Noninvasive positron emission tomographic neuroimaging of vesicular monoamine transporter 2 with 9-[(18)F] fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) was used before, and 15 and 90 days after the beginning of acute MPTP treatment. The imaging showed evident progressive loss of striatal uptake of [(18)F]AV-133. The dopaminergic denervation severity had a significant linear correlation with the clinical rating scores and the bradykinesia subscores. These findings demonstrated that [(18)F]AV-133 PET imaging is a useful tool to noninvasively evaluate the evolution of monoaminergic terminal loss in a monkey model of MPTP-induced parkinsonism. Topics: Animals; Corpus Striatum; Disease Models, Animal; Dopamine; Female; Fluorine Radioisotopes; Linear Models; Macaca fascicularis; Male; Parkinsonian Disorders; Positron-Emission Tomography; Severity of Illness Index; Tetrabenazine; Time Factors; Vesicular Monoamine Transport Proteins | 2014 |
Quantitative analysis of binding sites for 9-fluoropropyl-(+)-dihydrotetrabenazine ([¹⁸F]AV-133) in a MPTP-lesioned PD mouse model.
[¹⁸F]AV-133 is a novel PET tracer for targeting the vesicular monoamine transporter 2 (VMAT2). The aim of this study is to characterize and quantify the loss of monoamine neurons with [¹⁸F]AV-133 in the MPTP-lesioned PD mouse model using animal PET imaging and ex vivo quantitative autoradiography (QARG).. Optimal imaging time window of [¹⁸F]AV-133 was first determined in normal C57BL/6 mice (n = 3) with a 90-min dynamic scan. The reproducibility of [¹⁸F]AV-133 PET imaging was evaluated by performing a test-retest study within 1 week for the normal group (n = 6). For MPTP-lesioned studies, normal, and MPTP-treated [25 mg mg/kg once (Group A) and twice (Group B), respectively, daily for 5 days, i.p., groups of four normal and MPTP-treated] mice were used. PET imaging studies at baseline and at Day 4 post-MPTP injections were performed at the optimal time window after injection of 11.1 MBq [¹⁸F]AV-133. Specific uptake ratio (SUr) of [¹⁸F]AV-133 was calculated by [(target uptake-cerebellar uptake)/cerebellar uptake] with cerebellum as the reference region. Ex vitro QARG and immunohistochemistry (IHC) studies with tyrosine hydroxylase antibody were carried out to confirm the abundance of dopaminergic neurons.. The variability between [¹⁸F]AV-133 test-retest striatal SUr was 6.60 ± 3.61% with less than 5% standard deviation between animals (intervariability). The percentages of MPTP lesions were Group A 0.94 ± 0.29, -42.1% and Group B 0.65 ± 0.09, -60.4%. By QARG, specific binding of [¹⁸F]AV-133 was reduced relative to the control groups by 50.6% and 60.7% in striatum and by 30.6% and 46.4% in substantia nigra (Groups A and B, respectively). Relatively small [¹⁸F]AV-133 SUr decline was noted in the serotonin and norepinephrine-enriched regions (7.9% and 9.4% in mid-brain). Results obtained from IHC consistently confirmed the sensitivity and selectivity of dopaminergic neuron loss after MPTP treatment.. [¹⁸F]AV-133 PET SUr displayed a high test-retest stability. The SUr significantly declined in the caudate putamen but not in the hypothalamus and midbrain regions after MPTP treatment in the mouse brain. The results obtained for QARG and IHC were consistent and correlated well with the PET imaging studies. On the basis of these concordant results, we find that [¹⁸F]AV-133 should serve as a useful and reliable PET tracer for evaluating nigrostriatal degeneration. Topics: Animals; Binding Sites; Brain; Disease Models, Animal; Fluorine Radioisotopes; Male; Mice; Mice, Inbred C57BL; MPTP Poisoning; Positron-Emission Tomography; Tetrabenazine; Vesicular Monoamine Transport Proteins | 2012 |
PET imaging a MPTP-induced mouse model of Parkinson's disease using the fluoropropyl-dihydrotetrabenazine analog [18F]-DTBZ (AV-133).
Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand (18)F-DTBZ (AV-133) was used as a radioactive tracer in our imaging experiments to monitor the changes of the dopaminergic system. Intraperitoneal administrations of MPTP (a neurotoxin) were delivered to mice at regular intervals to induce lesions consistent with PD. Our results indicate a significant decline in the levels of striatal dopamine and its metabolites (DOPAC and HVA) following MPTP treatment as determined by HPLC method. Images obtained by positron emission tomography revealed uptake of (18)F-DTBZ analog in the mouse striatum. However, reduction in radioligand binding was evident in the striatum of MPTP lesioned animals as compared with the control group. Immunohistochemical analysis further confirmed PET imaging results and indicated the progressive loss of dopaminergic neurons in treated animals compared with the control counterparts. In conclusion, our findings suggest that MPTP induced PD in mouse model is appropriate to follow the degeneration of dopaminergic system and that (18)F-DTBZ analog is a potentially sensitive radiotracer that can used to diagnose changes associated with PD by PET imaging modality. Topics: Animals; Corpus Striatum; Disease Models, Animal; Dopamine; Fluorine Radioisotopes; Male; Mice; Mice, Inbred C57BL; MPTP Poisoning; Norepinephrine; Positron-Emission Tomography; Tetrabenazine | 2012 |
In vivo studies of the SERT-selective [18F]FPBM and VMAT2-selective [18F]AV-133 radiotracers in a rat model of Parkinson's disease.
The utility of [(18)F]FPBM [2-(2'-((dimethylamino)methyl)-4'-(3-[(18)F]-fluoropropoxy)phenylthio)benzenamine], a selective serotonin transporter (SERT) tracer, and [(18)F]AV-133 [(+)-2-Hydroxy-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine], a selective vesicular monoamine transporter 2 (VMAT2) tracer, were tested in the 6-hydroxydopamine (6-OHDA) unilateral lesioned rat model.. Positron emission tomography (PET) imaging of three 6-OHDA unilateral lesioned male Sprague Dawley rats (Rats 1-3) were performed with [(18)F]FPBM and [(18)F]AV-133 to examine whether changes in SERT and VMAT2 binding, respectively, could be detected in the brain. The brains of the three rats were then removed and examined by in vitro autoradiography with [(18)F]FPBM and the dopamine transporter ligand, [(125)I]IPT [N-(3'-[(125)I]-iodopropen-2'-yl)-2-beta-carbomethoxy-3-beta-(4-chloro phenyl) tropane, for confirmation. Biodistribution of [(18)F]FPBM in a separate group of p-chloroamphetamine (PCA) treated rats were also performed.. PET image analysis showed varying levels of SERT binding reduction (Rat 1=-11%, Rat 2=-4%, Rat 3=-43%; n=2) and a clear and definitive loss of VMAT2 binding (Rat 1=-87%, Rat 2=-72%, and Rat 3=-91%; n=1) in the left striatum when compared to the right (non-lesioned side) striatum. The results from PET imaging were corroborated with quantitative in vitro autoradiography. Rats treated with a selective serotonin toxin (p-chloroamphetamine) showed a significant reduction of [(18)F]FPBM uptake in the cortex and hypothalamus regions of the brain.. The preliminary data suggest that [(18)F]FPBM and [(18)F]AV-133 may be useful for the examination of serotonergic and dopaminergic neuron integrity, respectively, in the living brain. Topics: Aniline Compounds; Animals; Autoradiography; Disease Models, Animal; Fluorine Radioisotopes; Male; p-Chloroamphetamine; Parkinson Disease; Positron-Emission Tomography; Protein Binding; Radioactive Tracers; Rats; Rats, Sprague-Dawley; Serotonin Plasma Membrane Transport Proteins; Substrate Specificity; Tetrabenazine; Vesicular Monoamine Transport Proteins | 2010 |