flavin-adenine-dinucleotide and Hamartoma-Syndrome--Multiple

flavin-adenine-dinucleotide has been researched along with Hamartoma-Syndrome--Multiple* in 1 studies

Other Studies

1 other study(ies) available for flavin-adenine-dinucleotide and Hamartoma-Syndrome--Multiple

ArticleYear
Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53.
    Human molecular genetics, 2012, Jan-15, Volume: 21, Issue:2

    Cowden syndrome (CS), a Mendelian autosomal-dominant disorder, predisposes to breast, thyroid and other cancers. Germline mutations in phosphatase and tensin homolog (PTEN) have been recently reported in 23% of a large series of classic CS. Here, we validated our small (n = 10) pilot study in a large patient series that germline variations in succinate dehydrogenase genes (SDHx) occur in 8% (49/608) of PTEN mutation-negative CS and CS-like (CSL) individuals (SDH(var+)). None of these SDHx variants was found in 700 population controls (P < 0.0001). We then found that SDHx variants also occur in 6% (26/444) of PTEN mutation-positive (PTEN(mut+)) CS/CSL individuals (PTEN(mut+)/SDH(var+)). Of 22 PTEN(mut+)/SDH(var+) females, 17 had breast cancers compared with 34/105 PTEN(mut+) (P < 0.001) or 27/47 SDH(var+) patients (P = 0.06). Notably, individuals with SDH(var+) alone had the highest thyroid cancer prevalence (24/47) compared with PTEN(mut+) patients (27/105, P = 0.002) or PTEN(mut+)/SDH(var+) carriers (6/22, P = 0.038). Patient-derived SDH(var+) lymphoblastoid cells had elevated cellular reactive oxygen species, highest in PTEN(mut+)/SDH(var+) cells, correlating with apoptosis resistance. SDH(var+) cells showed stabilized and hyperactivated hypoxia inducible factor (HIF)1α signaling. Most interestingly, we also observed the loss of steady-state p53 in the majority of SDH(var+) cells. This loss of p53 was regulated by MDM2-independent NADH quinone oxidoreductase 1-mediated protein degradation, likely due to the imbalance of flavin adenine dinucleotide/nicotinamide adenine dinucleotide in SDH(var+) cells. Our data suggest the potential regulation of HIF1α, p53 and PTEN signaling by mitochondrial metabolism in CS/CSL tumorigenesis. Together, our findings suggest the importance of considering SDHx as candidate predisposing and modifier genes for CS/CSL-related malignancy risks, and a mechanism which suggests ways of therapeutic reversal or prevention.

    Topics: Breast Neoplasms; Female; Flavin-Adenine Dinucleotide; Genes, p53; Genetic Carrier Screening; Genetic Predisposition to Disease; Germ-Line Mutation; Hamartoma Syndrome, Multiple; Humans; NAD; PTEN Phosphohydrolase; Succinate Dehydrogenase; Thyroid Neoplasms

2012