flavin-adenine-dinucleotide has been researched along with Carcinoma--Ductal--Breast* in 2 studies
2 other study(ies) available for flavin-adenine-dinucleotide and Carcinoma--Ductal--Breast
Article | Year |
---|---|
Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
Stokes Shift (SS) Spectroscopy (SSS) of normal and abnormal breast and prostate tissues were studied. SS spectra is measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval of Δλ = 20 nm. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological tissues of breast and prostate tissues were observed. The SS spectra of normal and different pathological breast and prostate tissues show the distinct peaks around 300, 350, 450, 500 and 600 nm may be attributed to tryptophan, collagen, NADH, flavin and porphyrin, respectively. Results of the current study demonstrate that the SS spectral changes due to tryptophan, collagen, hemoglobin, NADH, FAD and porphyrin have good diagnostic potential; therefore can be targeted as native tumor markers. Topics: Adult; Breast Neoplasms; Carcinoma, Ductal, Breast; Female; Fibroadenoma; Flavin-Adenine Dinucleotide; Humans; Male; Middle Aged; NAD; Pilot Projects; Porphyrins; Prostatic Hyperplasia; Prostatic Neoplasms; Spectrometry, Fluorescence; Spectrophotometry; Young Adult | 2011 |
Experimental and theoretical investigation of fluorescence photobleaching and recovery in human breast tissue and tissue phantoms.
Photobleaching and recovery of 488-nm excited fluorescence from resected human breast tissue samples have been studied. Profiles of photobleaching decay were seen to be faster in cancerous tissue than in those of the normal tissue. The reverse behavior was observed in profiles of recovery after photobleaching. A theoretical model based on one-dimensional diffusion theory has been developed to provide insight into the phenomena of fluorescence during photobleaching and recovery in a multiply scattering medium such as tissue. To understand photobleaching and recovery with the help of this theoretical model, we carried out experiments with model media that were prepared with authentic fluorophores, scatterers, and absorbers. The results of these studies suggest that the fluorescence photobleaching profiles are affected more by the absorption than by the scattering properties of a turbid medium such as tissue. In contrast, the scattering properties of the medium are found to affect the fluorescence recovery profiles to a greater extent. These observations could be related to the observed difference in fluorescence photobleaching and recovery profiles of normal and cancerous breast tissues. Topics: Breast; Breast Neoplasms; Carcinoma, Ductal, Breast; Diffusion; Female; Flavin-Adenine Dinucleotide; Fluorescence Recovery After Photobleaching; Humans; Models, Theoretical; Phantoms, Imaging; Protoporphyrins | 2004 |