fk-866 has been researched along with Pancreatic-Neoplasms* in 8 studies
1 review(s) available for fk-866 and Pancreatic-Neoplasms
Article | Year |
---|---|
Pancreatic Cancer Metabolism: Molecular Mechanisms and Clinical Applications.
Pancreatic adenocarcinoma is a leading cause of cancer mortality in western countries with a uniformly poor prognosis. Unfortunately, there has been little in the way of novel therapeutics for this malignancy over the last several decades. Derangements in metabolic circuitry favoring excess glycolysis are increasingly recognized as a key hallmark of cancer.. The role of alterations in glutamine metabolism in pancreatic tumor progression has been elucidated in animal models and human cells lines, and there has been considerable interest in exploiting these aberrations for the treatment of pancreatic cancer. Other strategies targeting NQO1/GLS1 inhibition, NAD+ synthesis, and TCA cycle intermediates are being actively studied in the clinic. Aberrant metabolism in pancreatic cancer poses a unique therapeutic strategy. We review preclinical and clinical studies looking to exploit alterations in the metabolic circuitry of pancreatic cancer. Topics: Acrylamides; Adenocarcinoma; Antineoplastic Agents; Citric Acid Cycle; Glutaminase; Glutamine; Humans; Mitochondria; Molecular Targeted Therapy; NAD; NAD(P)H Dehydrogenase (Quinone); Pancreatic Neoplasms; Piperidines | 2018 |
7 other study(ies) available for fk-866 and Pancreatic-Neoplasms
Article | Year |
---|---|
Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC Topics: Acrylamides; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cytokines; Humans; Pancreatic Neoplasms; Piperidines | 2022 |
Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer.
Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment. Topics: 3' Untranslated Regions; Acrylamides; Animals; Antimetabolites, Antineoplastic; Binding Sites; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cytokines; Deoxycytidine; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Gemcitabine; Glycolysis; Humans; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, SCID; MicroRNAs; NAD; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; RNA Interference; Time Factors; Transfection; Tumor Burden; Xenograft Model Antitumor Assays | 2016 |
A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT.
Treating pancreatic cancer is extremely challenging due to multiple factors, including chemoresistance and poor disease prognosis. Chemoresistance can be explained by: the presence of a dense stromal barrier leading to a lower vascularized condition, therefore limiting drug delivery; the huge intra-tumoral heterogeneity; and the status of epithelial-to-mesenchymal transition. These factors are highly variable between patients making it difficult to predict responses to chemotherapy. Nicotinamide phosphoribosyl transferase (NAMPT) is the main enzyme responsible for recycling cytosolic NAD+ in hypoxic conditions. FK866 is a noncompetitive specific inhibitor of NAMPT, which has proven anti-tumoral effects, although a clinical advantage has still not been demonstrated. Here, we tested the effect of FK866 on pancreatic cancer-derived primary cell cultures (PCCs), both alone and in combination with three different drugs typically used against this cancer: gemcitabine, 5-Fluorouracil (5FU) and oxaliplatin. The aims of this study were to evaluate the benefit of drug combinations, define groups of sensitivity, and identify a potential biomarker for predicting treatment sensitivity. We performed cell viability tests in the presence of either FK866 alone or in combination with the drugs above-mentioned. We confirmed both inter- and intra-tumoral heterogeneity. Interestingly, only the in vitro effect of gemcitabine was influenced by the addition of FK866. We also found that NAMPT mRNA expression levels can predict the sensitivity of cells to FK866. Overall, our results suggest that patients with tumors sensitive to FK866 can be identified using NAMPT mRNA levels as a biomarker and could therefore benefit from a co-treatment of gemcitabine plus FK866. Topics: Acrylamides; Adult; Aged; Aged, 80 and over; Animals; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Pancreatic Ductal; Cytokines; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Humans; Male; Mice; Middle Aged; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2016 |
NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors. Topics: Acrylamides; Cell Death; Cell Line, Tumor; DNA Breaks, Double-Stranded; Drug Synergism; Energy Metabolism; Glycolysis; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Poly Adenosine Diphosphate Ribose; Reactive Oxygen Species | 2015 |
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation.
Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells:. quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy. Topics: Acrylamides; Cell Death; Cell Line; Cell Line, Tumor; Humans; Immunoblotting; Membrane Potential, Mitochondrial; Naphthoquinones; Pancreatic Neoplasms; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species | 2015 |
Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.
Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth.. We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth.. We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth in vitro and in vivo, and further increased the sensitivity to Nampt inhibition.. Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer. Topics: Acrylamides; ADP-ribosyl Cyclase 1; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cytokines; Female; Humans; Membrane Glycoproteins; Mice; Mice, Nude; Molecular Targeted Therapy; NAD; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Sirtuin 1; Tumor Burden; Xenograft Model Antitumor Assays | 2014 |
Targeting metabolic scavenging in pancreatic cancer.
Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth. Topics: Acrylamides; Animals; Antineoplastic Agents; Female; Humans; NAD; Pancreatic Neoplasms; Piperidines | 2014 |