fk-866 and Ovarian-Neoplasms

fk-866 has been researched along with Ovarian-Neoplasms* in 5 studies

Other Studies

5 other study(ies) available for fk-866 and Ovarian-Neoplasms

ArticleYear
Discovery of potent NAMPT-Targeting PROTACs using FK866 as the warhead.
    Bioorganic & medicinal chemistry letters, 2023, 08-15, Volume: 92

    Nicotinamide phosphoribosyltransferase (NAMPT) has emerged as a promising target for cancer therapy due to its strong correlation with nicotinamide adenine dinucleotide (NAD

    Topics: Cell Line, Tumor; Cytokines; Female; Humans; NAD; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Proteolysis; Proteolysis Targeting Chimera

2023
NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer.
    Cancer research, 2020, 02-15, Volume: 80, Issue:4

    Epithelial ovarian cancer (EOC) is the most lethal of gynecologic malignancies. The standard-of-care treatment for EOC is platinum-based chemotherapy such as cisplatin. Platinum-based chemotherapy induces cellular senescence. Notably, therapy-induced senescence contributes to chemoresistance by inducing cancer stem-like cells (CSC). However, therapeutic approaches targeting senescence-associated CSCs remain to be explored. Here, we show that nicotinamide phosphoribosyltransferase (NAMPT) inhibition suppresses senescence-associated CSCs induced by platinum-based chemotherapy in EOC. Clinically applicable NAMPT inhibitors suppressed the outgrowth of cisplatin-treated EOC cells both

    Topics: Acrylamides; Aldehyde Dehydrogenase 1 Family; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Ovarian Epithelial; Cell Line, Tumor; Cellular Senescence; Cisplatin; Cytokines; Drug Resistance, Neoplasm; Female; Humans; Mice; Neoplastic Stem Cells; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Retinal Dehydrogenase; Spheroids, Cellular; Xenograft Model Antitumor Assays

2020
Divergent metabolic responses dictate vulnerability to NAMPT inhibition in ovarian cancer.
    FEBS letters, 2020, Volume: 594, Issue:9

    It is of current interest to target cancer metabolism as treatment for many malignancies, including ovarian cancer (OVC), in which few druggable driver mutations have been identified. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, is a potential therapeutic target in OVC. However, factors that determine responsiveness to NAMPT inhibition are not fully understood. Here, we report that OVC cell lines can be divided into subgroups exhibiting NAMPT-dependent or NAMPT-independent glycolysis, and these metabolic differences correlate with vulnerability to NAMPT inhibition. Interestingly, cells showing NAMPT-dependent glycolysis were enriched in a group of cells lacking BRCA1/2 gene mutations. Our findings suggest the importance of selecting appropriate patients for NAMPT-targeting therapy in OVC.

    Topics: Acrylamides; Cell Line, Tumor; Cytokines; Female; Glycolysis; Humans; Lactic Acid; NAD; Niacin; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors

2020
Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.
    Oncotarget, 2016, Jan-19, Volume: 7, Issue:3

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.

    Topics: 5'-Nucleotidase; Acrylamides; Adenosine Triphosphate; Animals; Cell Line, Tumor; Cytokines; Female; GPI-Linked Proteins; Humans; Mice; Mice, Nude; NAD; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Pyridinium Compounds; RNA Interference; RNA, Small Interfering

2016
[18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts.
    PloS one, 2013, Volume: 8, Issue:1

    APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake.. In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry.. Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group.. APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.

    Topics: Acrylamides; Animals; Antineoplastic Agents; Biological Transport; Cell Proliferation; Clinical Trials, Phase II as Topic; Dideoxynucleosides; Drug Monitoring; Female; Fluorine Radioisotopes; Fluorodeoxyglucose F18; Gene Expression; Humans; Ki-67 Antigen; Mice; Mice, Nude; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Positron-Emission Tomography; Radiography; Radiopharmaceuticals; Tumor Burden; Xenograft Model Antitumor Assays

2013