fk-866 and Leukemia

fk-866 has been researched along with Leukemia* in 6 studies

Other Studies

6 other study(ies) available for fk-866 and Leukemia

ArticleYear
Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent antileukemic activity.
    Leukemia, 2020, Volume: 34, Issue:7

    Acute graft-versus-host disease (aGVHD) and tumor relapse remain major complications after allogeneic hematopoietic stem cell transplantation. Alloreactive T cells and cancer cells share a similar metabolic phenotype to meet the bioenergetic demands necessary for cellular proliferation and effector functions. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor in energy metabolism and is constantly replenished by nicotinamide phosphoribosyl-transferase (Nampt), the rate-limiting enzyme in the NAD salvage pathway. Here we show, that Nampt blockage strongly ameliorates aGVHD and limits leukemic expansion. Nampt was highly elevated in serum of patients with gastrointestinal GVHD and was particularly abundant in human and mouse intestinal T cells. Therapeutic application of the Nampt small-molecule inhibitor, Fk866, strongly attenuated experimental GVHD and caused NAD depletion in T-cell subsets, which displayed differential susceptibility to NAD shortage. Fk866 robustly inhibited expansion of alloreactive but not memory T cells and promoted FoxP3-mediated lineage stability in regulatory T cells. Furthermore, Fk866 strongly reduced the tumor burden in mouse leukemia and graft-versus-leukemia models. Ex vivo studies using lymphocytes from GVHD patients demonstrated potent antiproliferative properties of Fk866, suggesting potential clinical utility. Thus, targeting NAD immunometabolism represents a novel approach to selectively inhibit alloreactive T cells during aGVHD with additional antileukemic efficacy.

    Topics: Acrylamides; Animals; Antineoplastic Agents; Apoptosis; Cell Proliferation; Cytokines; Energy Metabolism; Female; Graft vs Host Disease; Humans; Immunologic Memory; Leukemia; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; NAD; Nicotinamide Phosphoribosyltransferase; Piperidines; T-Lymphocytes, Regulatory; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2020
APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2015, Sep-01, Volume: 21, Issue:17

    The nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, APO866, has been previously shown to have antileukemic activity in preclinical models, but its cytotoxicity in primary leukemia cells is frequently limited. The success of current antileukemic treatments is reduced by the occurrence of multidrug resistance, which, in turn, is mediated by membrane transport proteins, such as P-glycoprotein-1 (Pgp). Here, we evaluated the antileukemic effects of APO866 in combination with Pgp inhibitors and studied the mechanisms underlying the interaction between these two types of agents.. The effects of APO866 with or without Pgp inhibitors were tested on the viability of leukemia cell lines, primary leukemia cells (AML, n = 6; B-CLL, n = 19), and healthy leukocytes. Intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP levels, mitochondrial transmembrane potential (ΔΨ(m)), markers of apoptosis and of endoplasmic reticulum (ER) stress were evaluated.. The combination of APO866 with Pgp inhibitors resulted in a synergistic cytotoxic effect in leukemia cells, while sparing normal CD34(+) progenitor cells and peripheral blood mononuclear cells. Combining Pgp inhibitors with APO866 led to increased intracellular APO866 levels, compounded NAD(+) and ATP shortage, and induced ΔΨ(m) dissipation. Notably, APO866, Pgp inhibitors and, to a much higher extent, their combination induced ER stress and ER stress inhibition strongly reduced the activity of these treatments.. APO866 and Pgp inhibitors show a strong synergistic cooperation in leukemia cells, including acute myelogenous leukemia (AML) and B-cell chronic lymphocytic leukemia (B-CLL) samples. Further evaluations of the combination of these agents in clinical setting should be considered.

    Topics: Acrylamides; Adenosine Triphosphate; Aged; Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily B; Cell Line, Tumor; Cell Survival; Chromosome Aberrations; Cyclosporine; Drug Resistance, Neoplasm; Drug Synergism; Endoplasmic Reticulum Stress; Female; Gene Expression; Humans; Immunoglobulin Heavy Chains; Leukemia; Male; Membrane Potential, Mitochondrial; Middle Aged; Mitochondria; Mutation; NAD; Neoplasm Staging; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Piperidines; Primary Cell Culture; Prognosis; Tumor Cells, Cultured; Unfolded Protein Response

2015
EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition.
    BMC cancer, 2015, Nov-05, Volume: 15

    Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide, is one of the major factors regulating cancer cells metabolism and is considered a promising target for treating cancer. The prototypical NAMPT inhibitor FK866 effectively lowers NAD(+) levels in cancer cells, reducing the activity of NAD(+)-dependent enzymes, lowering intracellular ATP, and promoting cell death.. We show that FK866 induces a translational arrest in leukemia cells through inhibition of MTOR/4EBP1 signaling and of the initiation factors EIF4E and EIF2A. Specifically, treatment with FK866 is shown to induce 5'AMP-activated protein kinase (AMPK) activation, which, together with EIF2A phosphorylation, is responsible for the inhibition of protein synthesis. Notably, such an effect was also observed in patients' derived primary leukemia cells including T-cell Acute Lymphoblastic Leukemia. Jurkat cells in which AMPK or LKB1 expression was silenced or in which a non-phosphorylatable EIF2A mutant was ectopically expressed showed enhanced sensitivity to the NAMPT inhibitor, confirming a key role for the LKB1-AMPK-EIF2A axis in cell fate determination in response to energetic stress via NAD(+) depletion.. We identified EIF2A phosphorylation as a novel early molecular event occurring in response to NAMPT inhibition and mediating protein synthesis arrest. In addition, our data suggest that tumors exhibiting an impaired LBK1- AMPK- EIF2A response may be especially susceptible to NAMPT inhibitors and thus become an elective indication for this type of agents.

    Topics: Acrylamides; Adenosine Triphosphate; AMP-Activated Protein Kinases; Apoptosis; Caspases; Cell Line, Tumor; Cell Survival; Cytokines; Drug Resistance, Neoplasm; Eukaryotic Initiation Factor-2; Eukaryotic Initiation Factor-4E; Humans; Jurkat Cells; Leukemia; NAD; Nicotinamide Phosphoribosyltransferase; Phosphorylation; Piperidines; Protein Biosynthesis; Signal Transduction; Stress, Physiological; TOR Serine-Threonine Kinases; Transcription, Genetic

2015
A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis.
    Autophagy, 2014, Volume: 10, Issue:4

    APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.

    Topics: Acrylamides; Apoptosis; Autophagy; Caspase 3; Cell Line, Tumor; Humans; Leukemia; Lymphoma; NAD; Piperidines; Reactive Oxygen Species

2014
Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.
    PloS one, 2011, Volume: 6, Issue:7

    Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD(+)-independent HDACs are an established therapeutic target, the relevance of NAD(+)-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+)-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+) levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+)-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

    Topics: Acrylamides; Antigens, CD34; bcl-2-Associated X Protein; Cell Death; Cell Line, Tumor; Drug Screening Assays, Antitumor; Drug Synergism; Gene Silencing; Histone Deacetylase Inhibitors; Humans; Leukemia; NAD; Piperidines; Sirtuins; Up-Regulation

2011
Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells.
    Experimental hematology, 2010, Volume: 38, Issue:11

    The nicotinamide phosphoribosyltransferase (Nampt) inhibitor APO866 depletes intracellular nicotinamide adenine dinucleotide (NAD(+)) and shows promising anticancer activity in preclinical studies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to plasma membrane receptors DR4 and DR5 and induces apoptosis via caspase-8 and -10. Here we have explored the interaction between APO866 and TRAIL in leukemia cell lines and in primary B-cell chronic lymphocytic leukemia cells.. Cells were treated with APO866, TRAIL, or their combination. Viability and mitochondrial transmembrane potential (ΔΨ(m)) were determined by cell staining with propidium iodide and tetramethylrhodamine ethyl ester, respectively, and flow cytometry. Nampt and γ-tubulin levels, as well as caspase-3 cleavage were detected by immunoblotting. DR4 and DR5 expression were assessed by immunostaining and flow cytometry. Caspases were inhibited with zVAD-FMK and zDEVD-FMK; autophagy with 3-methyladenine, LY294002, and wortmannin. Intracellular NAD(+) and adenosine triphosphate (ATP) were measured by cycling assays and high-performance liquid chromatography (HPLC), respectively.. APO866 induced NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage in leukemia cells, thereby leading to autophagic cell death. TRAIL induced caspase-dependent apoptosis. TRAIL addition to APO866 synergistically increased its activity in leukemia cells by enhancing NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage. No DR5 upregulation at the cell surface in response to APO866 was observed. Remarkably, in healthy leukocytes APO866 and TRAIL were poorly active and failed to show any cooperation.. Activation of the extrinsic apoptotic cascade with TRAIL selectively amplifies the sequelae of Nampt inhibition in leukemia cells, and appears as a promising strategy to enhance APO866 activity in hematological malignancies.

    Topics: Acrylamides; Adenosine Triphosphate; Aged; Apoptosis; Autophagy; Caspase 3; Cell Line, Tumor; Cells, Cultured; Cytokines; Drug Synergism; Female; Humans; Immunoblotting; Jurkat Cells; Leukemia; Leukemia, Lymphocytic, Chronic, B-Cell; Leukocytes, Mononuclear; Male; Membrane Potential, Mitochondrial; Middle Aged; NAD; Nicotinamide Phosphoribosyltransferase; Piperidines; Receptors, TNF-Related Apoptosis-Inducing Ligand; TNF-Related Apoptosis-Inducing Ligand; Tubulin

2010