fk-866 and Hyperandrogenism

fk-866 has been researched along with Hyperandrogenism* in 1 studies

Other Studies

1 other study(ies) available for fk-866 and Hyperandrogenism

ArticleYear
Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice.
    Life sciences, 2021, Jul-01, Volume: 276

    Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention.

    Topics: Acrylamides; Androgens; Animals; Blood Glucose; Cytokines; Disease Models, Animal; Female; Hyperandrogenism; Insulin Resistance; Letrozole; Mice; Nicotinamide Phosphoribosyltransferase; Piperidines; Polycystic Ovary Syndrome

2021