fk-866 has been researched along with Disease-Models--Animal* in 15 studies
15 other study(ies) available for fk-866 and Disease-Models--Animal
Article | Year |
---|---|
Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice.
Polycystic ovary syndrome is a common reproductive disorder in the female of reproductive age, which is characterized by hyperandrogenism, insulin resistance, cystic ovary and infertility. The level of pro-inflammatory adipokine, visfatin is elevated in PCOS conditions in human and animal. In this study, letrozole induced hyperandrogenised PCOS mice model have been used to unravel the effects of visfatin inhibition. The results showed that letrozole induced hyperandrogenisation significantly (p < 0.05) elevates ovarian visfatin concentration from 66.03 ± 1.77 to 112.08 ± 3.7 ng/ml, and visfatin expression to 2.5 fold (p < 0.05) compared to control. Visfatin inhibition in PCOS by FK866 has significantly (p < 0.05) suppressed the secretion of androgens, androstenedione (from 0.329 ± 0.07 to 0.097 ± 0.01 ng/ml) and testosterone levels (from 0.045 ± 0.003 to 0.014 ± 0.0009 ng/ml). Ovarian histology showed that visfatin inhibition suppressed cyst formation and promotes corpus luteum formation. Visfatin inhibition has suppressed apoptosis and increases the expression of BCL2 along with increase in the proliferation (GCNA expression elevated). Visfatin inhibition has increased ovarian glucose content (from 167.05 ± 8.5 to 210 ± 7 mg/dl), along with increase in ovarian GLUT8 expression. In vitro study has also supported the in vivo findings where FK866 treatment significantly (p < 0.05) suppressed testosterone (control-3.84 ± 0.44 ng/ml, 1 nM FK866-2.02 ± 0.048 ng/ml, 10 nM FK866-1.74 ± 0.20 ng/ml) and androstenedione (control-4.68 ± 0.91 ng/ml, 1 nM FK866-3.38 ± 0.27 ng/ml, 10 nM FK866-4.55 ± 0.83 ng/ml) production from PCOS ovary. In conclusion, this is first report, which showed that visfatin inhibition by FK866 in hyperandrogenised mice ameliorates pathogenesis of PCOS. Thus, it may be suggested that visfatin inhibition could have a therapeutic potential in PCOS management along with other intervention. Topics: Acrylamides; Androgens; Animals; Blood Glucose; Cytokines; Disease Models, Animal; Female; Hyperandrogenism; Insulin Resistance; Letrozole; Mice; Nicotinamide Phosphoribosyltransferase; Piperidines; Polycystic Ovary Syndrome | 2021 |
FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal kinase (JNK)-dependent autophagy.
Increasing evidence indicates that FK866, a specific noncompetitive nicotinamide phosphoribosyl transferase inhibitor, exhibits a protective effect on acute lung injury (ALI). Autophagy plays a pivotal role in sepsis-induced ALI. However, the contribution of autophagy and the underlying mechanism by which FK866-confered lung protection remains elusive. Herein, we aimed to study whether FK866 could alleviate sepsis-induced ALI via the JNK-dependent autophagy.. Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to establish the polymicrobial sepsis mice model, and treated with FK866 (10 mg/kg) at 24, 12 and 0.5 h before the CLP procedure. The lung protective effects were measured by lung histopathology, tissue edema, vascular leakage, inflammation infiltration, autophagy-related protein expression and JNK activity. A549 cells were stimulated with LPS (1000 ng/ml) to generate the ALI cell model, and pretreated with FK866 or SP600125 for 30 min to measure the autophagy-related protein expression and JNK activity.. Our results demonstrated that FK866 reduced lung injury score, tissue edema, vascular leakage, and inflammatory infiltration, and upregulated autophagy. The protective effect of autophagy conferred by FK866 on ALI was further clarified by using 3-methyladenine (3MA) and rapamycin. Additionally, the activity of JNK was suppressed by FK866, and inhibition of JNK promoted autophagy and showed a benefit effect.. Our study indicates that FK866 protects against sepsis-induced ALI by induction of JNK-dependent autophagy. This may provide new insights into the functional mechanism of NAMPT inhibition in sepsis-induced ALI. Topics: A549 Cells; Acrylamides; Acute Lung Injury; Animals; Autophagy; Bronchoalveolar Lavage Fluid; Capillary Permeability; Disease Models, Animal; Humans; Lung; Male; MAP Kinase Kinase 4; Mice; Mice, Inbred C57BL; Piperidines; Sepsis; Signal Transduction; Up-Regulation | 2020 |
Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway.
FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which exhibits neuroprotective effects in ischemic brain injury. However, in traumatic brain injury (TBI), the role and mechanism of FK866 remain unclear. The present research was aimed to investigate whether FK866 could attenuate TBI and clarified the underlying mechanisms.. A controlled cortical impact model was established, and FK866 at a dose of 5 mg/kg was administered intraperitoneally at 1 h and 6 h, then twice per day post-TBI until sacrifice. Brain water content, Evans blue dye extravasation, modified neurological severity scores (mNSS), Morris water maze test, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blot were performed.. The results demonstrated that FK866 significantly mitigated the brain edema, blood-brain barrier (BBB) disruption, and ameliorated the neurological function post-TBI. Moreover, FK866 decreased the number of Iba-1-positive cells, GFAP-positive astrocytes, and AQP4-positive cells. FK866 reduced the protein levels of proinflammatory cytokines and inhibited NF-κB from translocation to the nucleus. FK866 upregulated the expression of Bcl-2, diminished the expression of Bax and caspase 3, and the number of apoptotic cells. Moreover, p38 MAPK and ERK activation were significantly inhibited by FK866.. FK866 attenuated TBI-induced neuroinflammation and apoptosis, at least in part, through p38/ERK MAPKs signaling pathway. Topics: Acrylamides; Animals; Apoptosis; Behavior, Animal; Blood-Brain Barrier; Brain Edema; Brain Injuries, Traumatic; Cytokines; Disease Models, Animal; Female; Inflammation; Male; MAP Kinase Signaling System; Maze Learning; Neuroprotective Agents; NF-kappaB-Inducing Kinase; Piperidines; Protein Serine-Threonine Kinases; Rats; Rats, Sprague-Dawley | 2020 |
FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model.
Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and triggers NLRP3 inflammasome activation. FK866 (a NAMPT inhibitor) exerts a neuroprotective effect in ischemia/reperfusion injury through the suppression of mitochondrial dysfunction. We explored the effects of FK866 on pyroptosis and inflammation mediated by Drp1 in a cardiac arrest/cardiopulmonary resuscitation (CA/CPR) rat model.. Healthy male Sprague-Dawley rats were subjected to 7 min CA by trans-esophageal electrical stimulation followed by CPR. The surviving rats were treated with FK866 (a selective inhibitor of NAMPT), Mdivi-1 (Drp1 inhibitor), FK866 + Mdivi-1, or vehicle and then underwent 24 h reperfusion. Hematoxylin and eosin staining and immunohistochemistry (to detect NSE) were used to evaluate brain injury. We performed immunofluorescent staining to analyze NLRP3 and GSDMD expression in microglia or astrocytes and western blot to determine expression of NLRP3, IL-1β, GSDMD, Drp1, and Mfn2. Transmission electron microscopy was used to observe mitochondria.. FK866 significantly decreased pathological damage to brain tissue, inhibited the activation of NLRP3 in microglia or astrocytes, downregulated the expression of NLRP3, IL-1β, GSDMD, p-Drp1 protein, upregulated Mfn2 and improve mitochondrial morphology.. Our results demonstrated that FK866 protects the brain against ischemia-reperfusion injury in rats after CA/CPR by inhibiting pyroptosis and inflammation mediated by Drp1. Topics: Acrylamides; Animals; Anti-Inflammatory Agents; Brain; Cardiopulmonary Resuscitation; Disease Models, Animal; Dynamins; Inflammasomes; Inflammation Mediators; Male; Mitochondria; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Piperidines; Pyroptosis; Quinazolinones; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction | 2020 |
Nicotinamide phosphoribosyltransferase‑related signaling pathway in early Alzheimer's disease mouse models.
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that is characterized by progressive cognitive dysfunction and which ultimately leads to dementia. Studies have shown that energy dysmetabolism contributes significantly to the pathogenesis of a variety of aging‑associated diseases and degenerative diseases of the nervous system, including AD. One focus of research thus has been how to regulate the expression of nicotinamide phosphoribosyltransferase (NAMPT) to prevent against neurodegenerative diseases. Therefore, the present study used 6‑month‑old APPswe/PS1ΔE9 (APP/PS1) transgenic mice as early AD mouse models and sought to evaluate nicotinamide adenine dinucleotide (NAD+) and FK866 (a NAMPT inhibitor) treatment in APP/PS1 mice to study NAMPT dysmetabolism in the process of AD and elucidate the underlying mechanisms. As a result of this treatment, the expression of NAMPT decreased, the synthesis of ATP and NAD+ became insufficient and the NAD+/NADH ratio was reduced. The administration of NAD+ alleviated the spatial learning and memory of APP/PS1 mice and reduced senile plaques. Administration of NAD+ may also increase the expression of the key protein NAMPT and its related protein sirtuin 1 as well as the synthesis of NAD+. Therefore, increasing NAMPT expression levels may promote NAD+ production. Their regulation could form the basis for a new therapeutic strategy. Topics: Acrylamides; Alzheimer Disease; Amyloid; Animals; Behavior, Animal; Cytokines; Disease Models, Animal; Hippocampus; Learning; Male; Memory; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAD; Nicotinamide Phosphoribosyltransferase; Piperidines; Signal Transduction; Sirtuin 1 | 2019 |
Essential Role of Visfatin in Lipopolysaccharide and Colon Ascendens Stent Peritonitis-Induced Acute Lung Injury.
Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process. Topics: Acrylamides; Acute Lung Injury; Animals; Cell Line; Colon; Disease Models, Animal; Humans; Immunoassay; Immunoblotting; Immunohistochemistry; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Nicotinamide Phosphoribosyltransferase; Peritonitis; Piperidines; Sepsis; Signal Transduction; Stents | 2019 |
Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.
Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD. To explore possible alterations of NAD. We observed a 30% loss in levels of NAD. The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options. Topics: Acrylamides; AMP-Activated Protein Kinases; Animals; Cardiomyopathy, Dilated; Citric Acid; Cytokines; Dietary Supplements; Disease Models, Animal; Gene Expression Profiling; Heart Failure; Metabolome; Mice; Mice, Transgenic; Myocytes, Cardiac; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Phosphotransferases (Alcohol Group Acceptor); Piperidines; PPAR alpha; Pyridinium Compounds; Rats; Serum Response Factor | 2018 |
FK866 attenuates acute hepatic failure through c-jun-N-terminal kinase (JNK)-dependent autophagy.
FK866 exhibits a protective effect on D-galactosamine (GaIN)/lipopolysaccharide (LPS) and concanavalin A (ConA)-induced acute liver failure (ALF), but the mechanism by which FK866 affords this benefit has not yet been elucidated. Autophagy has a protective effect on acute liver injury. However, the contribution of autophagy to FK866-conferred hepatoprotection is still unclear. This study aimed to investigate whether FK866 could attenuate GaIN/LPS and ConA-induced ALF through c-jun-N-terminal kinase (JNK)-dependent autophagy. In vivo, Mice were pretreated with FK866 at 24, 12, and 0.5 h before treatment with GaIN/LPS and ConA. 3-methyladenine (3MA) or rapamycin were used to determine the role of autophagy in FK866-conferred hepatoprotection. In primary hepatocytes, autophagy was inhibited by 3MA or autophagy-related protein 7 (Atg7) small interfering RNA (siRNA). JNK was suppressed by SP600125 or Jnk siRNA. FK866 alleviated hepatotoxicity and increased autophagy while decreased JNK activation. Suppression of autophagy abolished the FK866-conferred protection. Inhibition of JNK increased autophagy and exhibited strongly protective effect. Collectively, FK866 could ameliorate GaIN/LPS and ConA-induced ALF through induction of autophagy while suppression of JNK. These findings suggest that FK866 acts as a simple and applicable preconditioning intervention to protect against ALF; autophagy and JNK may also provide therapeutic targets for ALF treatment. Topics: Acrylamides; Animals; Autophagy; Autophagy-Related Protein 7; Disease Models, Animal; Gene Knockdown Techniques; Hepatocytes; JNK Mitogen-Activated Protein Kinases; Lipopolysaccharides; Liver Failure, Acute; Liver Function Tests; Mice; Piperidines; Protective Agents; Signal Transduction | 2017 |
NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms.
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD). In the brain, NAMPT is primarily expressed in neurons and can prevent neuronal degeneration. NAMPT is also highly expressed in inflammatory cells, and is responsible for their activation. Since inflammation following traumatic brain injury enhances neuronal damage, we assessed the effects of nicotinamide mononucleotide (NMN), the direct NAMPT metabolite, and FK866, a potent NAMPT inhibitor, on brain injury in a cryoinjury mouse model. Twenty-four hours after brain cryoinjury, the density of neuron and the level of NAD decreased. Both NMN and FK866 alleviated the neuronal loss and decreased the lesion volume. NMN prevented the cryoinjury-induced decrease of NAD level, and FK866 decreased it further. On day 14 after cryoinjury, further neuronal loss occurred, astrocytes and Iba1-positive macrophage/microglia activated, and the NAD level increased. At this time-point, NAMPT expression was strongly induced in Iba1-positive macrophages/microglia in the lesion core. NMN and FK866 also alleviated the neuronal loss and decreased the lesion volume. In addition, FK866 significantly attenuated the activation of astrocytes and Iba1-positive macrophages/microglia, and decreased the NAD, while NMN had no such effects. Taken together, both FK866 and NMN attenuate traumatic brain injury. However, FK866 acts via the inhibition of the NAMPT activity in inflammatory cells resulting in the inhibition of inflammation, whereas NMN is effective via replenishing NAD. Topics: Acrylamides; Acute Disease; Animals; Astrocytes; Brain; Brain Injuries; Calcium-Binding Proteins; Cell Count; Chronic Disease; Cold Temperature; Cytokines; Disease Models, Animal; Macrophages; Male; Mice, Inbred BALB C; Microfilament Proteins; Microglia; NAD; Neurons; Neuroprotective Agents; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Piperidines | 2015 |
Nicotinamide phosphoribosyltransferase inhibition reduces intraplaque CXCL1 production and associated neutrophil infiltration in atherosclerotic mice.
Pharmacological treatments targeting CXC chemokines and the associated neutrophil activation and recruitment into atherosclerotic plaques hold promise for treating cardiovascular disorders. Therefore, we investigated whether FK866, a nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with anti-inflammatory properties that we recently found to reduce neutrophil recruitment into the ischaemic myocardium, would exert beneficial effects in a mouse atherosclerosis model. Atherosclerotic plaque formation was induced by carotid cast implantation in ApoE-/- mice that were fed with a Western-type diet. FK866 or vehicle were administrated intraperitoneally from week 8 until week 11 of the diet. Treatment with FK866 reduced neutrophil infiltration and MMP-9 content and increased collagen levels in atherosclerotic plaques compared to vehicle. No effect on other histological parameters, including intraplaque lipids or macrophages, was observed. These findings were associated with a reduction in both systemic and intraplaque CXCL1 levels in FK866-treated mice. In vitro, FK866 did not affect MMP-9 release by neutrophils, but it strongly reduced CXCL1 production by endothelial cells which, in the in vivo model, were identified as a main CXCL1 source at the plaque level. CXCL1 synthesis inhibition by FK866 appears to reflect interference with nuclear factor-κB signalling as shown by reduced p65 nuclear levels in endothelial cells pre-treated with FK866. In conclusion, pharmacological inhibition of NAMPT activity mitigates inflammation in atherosclerotic plaques by reducing CXCL1-mediated activities on neutrophils. These results support further assessments of NAMPT inhibitors for the potential prevention of plaque vulnerability. Topics: Acrylamides; Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Carotid Arteries; Carotid Artery Diseases; Cells, Cultured; Chemokine CXCL1; Collagen; Cytokines; Diet, High-Fat; Disease Models, Animal; Enzyme Inhibitors; Human Umbilical Vein Endothelial Cells; Humans; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophil Infiltration; Nicotinamide Phosphoribosyltransferase; Piperidines; Plaque, Atherosclerotic; Signal Transduction; Time Factors; Transcription Factor RelA | 2014 |
The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody.
APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately. Topics: Acrylamides; Animals; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Apoptosis; Biosynthetic Pathways; Caspase 3; Cell Line, Tumor; Disease Models, Animal; Drug Synergism; Humans; Lymphoma; Membrane Potential, Mitochondrial; Mice; Mice, SCID; NAD; Piperidines; Reactive Oxygen Species; Rituximab; Xenograft Model Antitumor Assays | 2014 |
Nicotinamide phosphoribosyltransferase inhibitor is a novel therapeutic candidate in murine models of inflammatory lung injury.
We previously identified the intracellular nicotinamide phosphoribosyltransferase (iNAMPT, aka pre-B-cell colony enhancing factor) as a candidate gene promoting acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) with circulating nicotinamide phosphoribosyltransferase potently inducing NF-κB signaling in lung endothelium. iNAMPT also synthesizes intracellular nicotinamide adenine dinucleotide (iNAD) in response to extracellular oxidative stress, contributing to the inhibition of apoptosis via ill-defined mechanisms. We now further define the role of iNAMPT activity in the pathogenesis of ARDS/VILI using the selective iNAMPT inhibitor FK-866. C57/B6 mice were exposed to VILI (40 ml/kg, 4 h) or LPS (1.5 mg/kg, 18 h) after osmotic pump delivery of FK-866 (100 mg/kg/d, intraperitoneally). Assessment of total bronchoalveolar lavage (BAL) protein, polymorphonuclear neutrophil (PMN) levels, cytokine levels (TNF-α, IL-6, IL-1α), lung iNAD levels, and injury scores revealed that FK-866-mediated iNAMPT inhibition successfully reduced lung tissue iNAD levels, BAL injury indices, inflammatory cell infiltration, and lung injury scores in LPS- and VILI-exposed mice. FK-866 further increased lung PMN apoptosis, as reflected by caspase-3 activation in BAL PMNs. These findings support iNAMPT inhibition via FK-866 as a novel therapeutic agent for ARDS via enhanced apoptosis in inflammatory PMNs. Topics: Acrylamides; Animals; Anti-Inflammatory Agents; Apoptosis; Bronchoalveolar Lavage Fluid; Caspase 3; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Inflammation Mediators; Lung; Mice; Mice, Inbred C57BL; NAD; Neutrophils; Nicotinamide Phosphoribosyltransferase; Piperidines; Pneumonia; Respiratory Distress Syndrome; Ventilator-Induced Lung Injury | 2014 |
Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury.
Visfatin, a novel adipokine, is predominantly produced by visceral adipose tissue and exists in intracellular and extracellular compartments. The intracellular form of visfatin is proved to be nicotinamide phosphoribosyltransferase (NAMPT) and exhibits neuroprotection through maintaining intracellular NAD(+) pool. However, whether extracellular form of visfatin has NAMPT activity and the effect of extracellular visfatin in cerebral ischemia are unknown.. Plasma concentrations of visfatin, NAD(+) , and ATP were increased in mice upon cerebral ischemia. Cultured glia, but not neuron, was able to secrete visfatin. Oxygen-glucose deprivation (OGD) stress increased the secretion of visfatin from glia. Extracellular recombinant mouse wild-type visfatin, but not mouse H247A-mutant enzymatic-dead visfatin, had NAMPT enzymatic function in vitro. Treatment of wild-type visfatin, but not H247A-mutant enzymatic-dead visfatin, significantly attenuated detrimental effect of OGD on the cell viability and apoptosis in both cultured mouse neuron and glia. Treatment of neutralizing antibody, abolished the protective effect of extracellular visfatin on cell viability, but failed to block the antiapoptotic effect of extracellular visfatin. At last, we observed that plasma visfatin concentrations decreased in 6-month-old but not 3-month-old SHR-SP compared with that in age-matched Wistar-Kyoto rats. Inhibition of NAMPT enzymatic function of visfatin (by FK866) accelerated the occurrence of stroke in SHR-SP.. Extracellular visfatin has NAMPT enzymatic activity and maybe be neuroprotective just as intracellular visfatin in cerebral ischemic injury. Topics: Acrylamides; Animals; Animals, Newborn; Antibodies; Brain Ischemia; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Culture Media, Conditioned; Disease Models, Animal; Extracellular Fluid; Gene Expression Regulation, Enzymologic; Male; Mice; Mice, Inbred C57BL; Neuroglia; Neurons; Neuroprotective Agents; Nicotinamide Phosphoribosyltransferase; Piperidines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Stroke | 2014 |
Distinct effects of Nampt inhibition on mild and severe models of lipopolysaccharide-induced myocardial impairment.
The study aimed to investigate the variance of myocardial and serum Nampt levels and the role of Nampt inhibition by FK866 in relatively mild endotoxemia- and severe endotoxemia-induced myocardial injury. Different doses of LPS were injected intraperitoneally to establish relatively mild endotoxemia (4mg/kg) and severe endotoxemia (20mg/kg). FK866 (10mg/kg b.w.) was injected intraperitoneally at hour one after LPS injection. The hearts were isolated from rats at hour six after LPS treatment and mounted in a Langendorff setup to measure cardiac function. Myocardial expression of Nampt was determined with immunohistochemistry assay and western blot. Serum Nampt level and myocardial TNF-α level were determined with ELISA. The myocardial level of TNF-α mRNA was detected with RT-PCR. The degree of myocardial oxidative injury was reflected by measuring lipid peroxidation and GSH/GSSG ratio. The apoptosis of cardiomyocytes was determined with detecting caspase-3 activity and with TUNEL assay. Myocardial expression of Nampt was markedly increased in 4mg/kg LPS-induced endotoxemia but decreased in 20mg/kg LPS-induced endotoxemia. Serum Nampt level was consistently up-regulated in both severities of endotoxemia. Inhibition of Nampt by FK866 reduced myocardial inflammation, oxidative injury and apoptosis of cardiomyocytes and improved cardiac function in 4mg/kg LPS-induced endotoxemia. In 20mg/kg LPS-induced endotoxemia, FK866 reduced myocardial inflammation, exacerbated apoptosis of cardiomyocytes, and failed to attenuate myocardial oxidative injury and cardiac dysfunction. In conclusion, the variance of myocardial Nampt expression may be associated with severities of endotoxemia. Nampt may play complicated roles and consequently application of Nampt inhibition should be critically evaluated in endotoxemia-induced myocardial impairment. Topics: Acrylamides; Animals; Apoptosis; Caspase 3; Cells, Cultured; Disease Models, Animal; Disease Progression; Endotoxemia; Gene Expression Regulation; Lipid Peroxidation; Lipopolysaccharides; Male; Myocarditis; Myocardium; Myocytes, Cardiac; Nicotinamide Phosphoribosyltransferase; Oxidative Stress; Piperidines; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2013 |
The NAMPT inhibitor FK866 reverts the damage in spinal cord injury.
Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT) in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI), the effect of NAMPT inhibitors was examined in this setting.. We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI.. Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-α, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg), the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-α, IL-1β, Bax expression and NF-κB activity.We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866.. Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors. Topics: Acrylamides; Alcohol Oxidoreductases; Animals; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation; In Situ Nick-End Labeling; Laminectomy; Male; Mice; Movement Disorders; Nerve Growth Factors; Nerve Tissue Proteins; Neutrophil Infiltration; NF-kappa B; Nicotinamide Phosphoribosyltransferase; Peroxidase; Phosphorylation; Piperidines; Silver Staining; Spinal Cord; Spinal Cord Injuries; Time Factors | 2012 |