fk-866 and Carcinoma--Pancreatic-Ductal

fk-866 has been researched along with Carcinoma--Pancreatic-Ductal* in 3 studies

Other Studies

3 other study(ies) available for fk-866 and Carcinoma--Pancreatic-Ductal

ArticleYear
Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer.
    European journal of medicinal chemistry, 2022, Sep-05, Volume: 239

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC

    Topics: Acrylamides; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cytokines; Humans; Pancreatic Neoplasms; Piperidines

2022
Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer.
    Cancer letters, 2016, 08-28, Volume: 379, Issue:1

    Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment.

    Topics: 3' Untranslated Regions; Acrylamides; Animals; Antimetabolites, Antineoplastic; Binding Sites; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cytokines; Deoxycytidine; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Gemcitabine; Glycolysis; Humans; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, SCID; MicroRNAs; NAD; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; RNA Interference; Time Factors; Transfection; Tumor Burden; Xenograft Model Antitumor Assays

2016
A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT.
    Oncotarget, 2016, Aug-16, Volume: 7, Issue:33

    Treating pancreatic cancer is extremely challenging due to multiple factors, including chemoresistance and poor disease prognosis. Chemoresistance can be explained by: the presence of a dense stromal barrier leading to a lower vascularized condition, therefore limiting drug delivery; the huge intra-tumoral heterogeneity; and the status of epithelial-to-mesenchymal transition. These factors are highly variable between patients making it difficult to predict responses to chemotherapy. Nicotinamide phosphoribosyl transferase (NAMPT) is the main enzyme responsible for recycling cytosolic NAD+ in hypoxic conditions. FK866 is a noncompetitive specific inhibitor of NAMPT, which has proven anti-tumoral effects, although a clinical advantage has still not been demonstrated. Here, we tested the effect of FK866 on pancreatic cancer-derived primary cell cultures (PCCs), both alone and in combination with three different drugs typically used against this cancer: gemcitabine, 5-Fluorouracil (5FU) and oxaliplatin. The aims of this study were to evaluate the benefit of drug combinations, define groups of sensitivity, and identify a potential biomarker for predicting treatment sensitivity. We performed cell viability tests in the presence of either FK866 alone or in combination with the drugs above-mentioned. We confirmed both inter- and intra-tumoral heterogeneity. Interestingly, only the in vitro effect of gemcitabine was influenced by the addition of FK866. We also found that NAMPT mRNA expression levels can predict the sensitivity of cells to FK866. Overall, our results suggest that patients with tumors sensitive to FK866 can be identified using NAMPT mRNA levels as a biomarker and could therefore benefit from a co-treatment of gemcitabine plus FK866.

    Topics: Acrylamides; Adult; Aged; Aged, 80 and over; Animals; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Pancreatic Ductal; Cytokines; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Humans; Male; Mice; Middle Aged; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2016