fibrin has been researched along with Pneumonia--Aspiration* in 2 studies
2 other study(ies) available for fibrin and Pneumonia--Aspiration
Article | Year |
---|---|
The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration.
Reopening the injured lung with deep inflation (DI) and positive end-expiratory pressure (PEEP) likely depends on the duration and severity of acute lung injury (ALI), key features of which include increased alveolar permeability and fibrin accumulation. We hypothesized that the response to DI and PEEP would worsen as ALI evolves and that this would correspond with increasing accumulation of alveolar fibrin. C57BL/6 mice were anesthetized and aspirated 75 microl of HCl (pH 1.8) or buffered normal saline. Subgroups were reanesthetized 4, 14, 24, and 48 h later. Following DI, tissue damping (G) and elastance (H) were measured periodically at PEEP of 1, 3, and 6 cmH(2)O, and air within the lung (thoracic gas volume) was quantified by microcomputed tomography. Following DI, G and H increased with time during progressive lung derecruitment, the latter confirmed by microcomputed tomography. The rise in H was greater in acid-injured mice than in controls (P < 0.05) and also increased from 4 to 48 h after acid aspiration, reflecting progressively worsening injury. The rise in H was reduced by PEEP, but this effect was significantly blunted by 48 h (P < 0.05), also confirmed by thoracic gas volume. Lung permeability and alveolar fibrin also increased over the 48-h study period, accompanied by increasing levels and transcription of the fibrinolysis inhibitor plasminogen activator inhibitor-1. Lung injury worsens progressively in mice during the 48 h following acid aspiration. This injury manifests as progressively increasing alveolar instability, likely due to surfactant dysfunction caused by increasing levels of alveolar protein and fibrin. Topics: Animals; Biomarkers; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Disease Progression; Female; Fibrin; Fibrinolysis; Hydrochloric Acid; Lung Volume Measurements; Mice; Mice, Inbred C57BL; Pneumonia, Aspiration; Positive-Pressure Respiration; Respiratory Distress Syndrome; Severity of Illness Index | 2007 |
Activated protein C attenuates acid-aspiration lung injury in rats.
Acid aspiration causes direct lung damage and secondary inflammatory response involving several cytokines and accumulation of neutrophils. Activated protein C (APC) exhibits antithrombotic and anti-inflammatory properties. We examined the effect and mechanism of pre-treatment APC on acid-aspirated lung injury in rats. Anesthetized rats were instilled intratracheally with normal saline (NS, 2 ml kg(-1)) or hydrochloric acid (HCl, 0.1 N, 2 ml kg(-1)). Thirty minutes before HCl instillation, APC (200 U kg(-1) h(-1)) was infused continuously into the right jugular vein. Animals were ventilated during the experiments. Five hours after HCl or NS instillation, bronchoalveolar lavage fluid (BALF) and lung tissue samples were obtained. Total and differential cell count, absorbance, albumin concentration, concentrations of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC) in BALF, wet and dry weight (W/D) ratio were measured. Platelet count and fibrin degradation product (FDP) in peripheral blood were also measured. HCl instillation markedly increased these values in BALF as well as W/D ratio. APC attenuated the parameters increased by HCl-induced lung injury in rats. However, HCl instillation and APC treatment did not cause significant changes in platelet count and FDP compared with the control. We conclude that APC treatment protected the rats against HCl-induced lung injury and that this action seemed to be due to the anti-inflammatory properties of this protein rather than its anti-coagulant effects. Topics: Albumins; Animals; Anticoagulants; Cell Count; Cytokines; Fibrin; Hemorrhage; Hydrochloric Acid; Leukocyte Elastase; Lung; Male; Neutrophils; Organ Size; Platelet Count; Pneumonia, Aspiration; Protein C; Pulmonary Alveoli; Rats; Rats, Sprague-Dawley; Respiratory Insufficiency | 2005 |