fibrin has been researched along with Aging--Premature* in 1 studies
1 other study(ies) available for fibrin and Aging--Premature
Article | Year |
---|---|
Whole blood thrombin generation in Bmal1-deficient mice.
The Calibrated Automated Thrombogram (CAT) assay that measures thrombin generation (TG) in platelet-poor and -rich plasma, is increasingly being recognised as a more sensitive tool to determine the overall function of the haemostatic system. We developed a method enabling the measurement of TG in a small aliquot of blood. The objective was to validate this assay in mouse blood and to examine the rate and extent of TG in a mouse model of premature aging. TG was assayed in blood from 20- to 28-week-old brain and muscle ARNT-like protein-1 (Bmal1)-deficient (knockout, KO) mice and wild-type (WT) littermates. Bmal1-KO mice are known to display symptoms of premature aging. TG was initiated by adding calcium, tissue factor and a thrombin specific substrate. After TG, the samples were prepared for scanning electron microscopy (SEM). The intra-assay variations (%) in mouse blood of the endogenous thrombin potential (ETP), peak height, lag time, time-to-peak and velocity index were 10% or less (n=24). We found that Bmal1-KO mice have a significantly (p<0.001) higher ETP (437 ± 7 nM.min; mean ± SD, n=7) when compared with WT mice (ETP=220 ± 45 nM.min; mean ± SD, n=5). The peak heights also differed significantly (p=0.027). By applying SEM we found that Bmal1 deficient mice display a denser fibrin network with smaller pores compared to WT mice. In conclusion, the whole blood TG assay in mice revealed to be reproducible. As a proof-of-principle we have shown that the whole blood TG assay is capable of detecting a prothrombotic phenotype in Bmal1-KO mice. Topics: Aging, Premature; Animals; ARNTL Transcription Factors; Blood Coagulation; Blood Coagulation Tests; Disease Models, Animal; Fibrin; Genetic Predisposition to Disease; Male; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Electron, Scanning; Phenotype; Predictive Value of Tests; Reproducibility of Results; Thrombin; Thrombosis | 2014 |