fibrin and Acute-Lung-Injury

fibrin has been researched along with Acute-Lung-Injury* in 18 studies

Reviews

3 review(s) available for fibrin and Acute-Lung-Injury

ArticleYear
COVID-19 coagulopathy - what should we treat?
    Experimental physiology, 2022, Volume: 107, Issue:7

    What is the topic of this review? Overview of the coagulation abnormalities, including elevated D-dimers widely reported with COVID-19, often labelled as COVID coagulopathy. What advances does it highlight? The review highlights the changes in bronchoalveolar haemostasis due to apoptosis of alveolar cells, which contributes to acute lung injury and acute respiratory distress syndrome; the pathophysiological mechanisms, including endothelial dysfunction and damage responsible for thrombosis of pulmonary microcirculation and potential contribution to the hypoxaemia of COVID-19 acute lung injury; and changes in coagulation proteins responsible for the hypercoagulability and increased risk of thrombosis in other venous and arterial beds. The rationale for anticoagulation and fibrinolytic therapies is detailed, and potential confounders that might have led to less than expected improvement in the various randomised controlled trials are considered.. Coronavirus disease 19 (COVID-19) causes acute lung injury with diffuse alveolar damage, alveolar-capillary barrier disruption, thrombin generation and alveolar fibrin deposition. Clinically, hypoxaemia is associated with preserved lung compliance early in the disease, suggesting the lack of excessive fluid accumulation typical of other lung injuries. Notably, autopsy studies demonstrate infection of the endothelium with extensive capillary thrombosis distinct from the embolic thrombi in pulmonary arteries. The inflammatory thrombosis in pulmonary vasculature secondary to endothelial infection and dysfunction appears to contribute to hypoxaemia. This is associated with elevated D-dimers and acquired hypercoagulability with an increased risk of deep vein thrombosis. Hypercoagulability is secondary to elevated plasma tissue factor levels, von Willebrand factor, fibrinogen, reduced ADAMTS-13 with platelet activation and inhibition of fibrinolysis. Multi-platform randomised controlled studies of systemic therapeutic anticoagulation with unfractionated and low molecular mass heparins demonstrated a survival benefit over standard care with full-dose anticoagulation in patients with non-severe disease who require supplemental oxygen, but not in severe disease requiring ventilatory support. Late intervention and the heterogeneous nature of enrolled patients can potentially explain the apparent lack of benefit in severe disease. Improvement in oxygenation has been demonstrated with intravenous fibrinolytics in small studies. Inhaled anticoagulants, thrombolytic agents and non-specific proteolytic drugs in clinical trials for decreasing alveolar fibrin deposition might benefit early disease. Essentially, COVID-19 is a multi-system disorder with pulmonary vascular inflammatory thrombosis that requires an interdisciplinary approach to combination therapies addressing both inflammation and intravascular thrombosis or alveolar fibrin deposits to improve outcomes.

    Topics: Acute Lung Injury; Anticoagulants; COVID-19; Fibrin; Humans; Hypoxia; SARS-CoV-2; Thrombophilia; Thrombosis

2022
Coagulation cascade proteinases in lung injury and fibrosis.
    Proceedings of the American Thoracic Society, 2012, Volume: 9, Issue:3

    The primary function of the coagulation cascade is to promote hemostasis and limit blood loss in response to tissue injury. In addition, there is now considerable evidence that coagulation plays pivotal roles in orchestrating inflammatory and tissue repair responses via both the generation of fibrin and activation of the family of proteinase-activated receptors (PARs). Consequently, uncontrolled coagulation and PAR signaling responses have been shown to contribute to excessive inflammatory and fibroproliferative responses in the context of a broad range of conditions, including acute lung injury and fibrotic lung disease. In terms of the cellular origin of excessive coagulation activity in the context of lung injury, coagulation zymogens are principally thought to be derived from the circulation and locally activated via the extrinsic tissue factor-dependent coagulation pathway within the intraalveolar compartment. More recently, we have provided compelling evidence that several key coagulation zymogens are locally synthesized by the hyperplastic alveolar epithelium in pulmonary fibrosis. In terms of signaling receptors activated in response to the coagulation cascade, current evidence suggests a major role for PAR1 in influencing endothelial-epithelial barrier disruption, inflammatory cell recruitment, and collagen deposition in response to lung injury, whereas PAR2 signaling has been implicated mainly in mediating lung inflammatory responses. This article reviews current understanding of coagulation pathways in acute and fibrotic lung injury and expands on the scientific rationale for strategies that specifically target intraalveolar coagulation or PAR signaling responses.

    Topics: Acute Lung Injury; Blood Coagulation; Blood Coagulation Factors; Fibrin; Fibrinolysis; Humans; Lung Injury; Peptide Hydrolases; Prothrombin; Pulmonary Alveoli; Pulmonary Fibrosis; Receptors, Proteinase-Activated; Signal Transduction; Thrombin

2012
The role of bronchoalveolar hemostasis in the pathogenesis of acute lung injury.
    Seminars in thrombosis and hemostasis, 2008, Volume: 34, Issue:5

    Disturbed alveolar fibrin turnover is intrinsic to acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pneumonia and is important to its pathogenesis. Recent studies also suggest disturbed alveolar fibrin turnover to be a feature of ventilator-induced lung injury (VILI). The mechanisms that contribute to alveolar coagulopathy are localized tissue factor-mediated thrombin generation, impaired activity of natural coagulation inhibitors, and depression of bronchoalveolar urokinase plasminogen activator-mediated fibrinolysis, caused by the increase of plasminogen activator inhibitors. Administration of anticoagulant agents (including activated protein C, antithrombin, tissue factor-factor VIIa pathway inhibitors, and heparin) and profibrinolytic agents (including plasminogen activators) attenuate pulmonary coagulopathy. Several preclinical studies show additional anti-inflammatory effects of these therapies in ALI/ARDS and pneumonia. In this article, we review the involvement of coagulation and fibrinolysis in the pathogenesis of ALI/ARDS pneumonia and VILI and the potential of anticoagulant and profibrinolytic strategies to reverse pulmonary coagulopathy and pulmonary inflammatory responses.

    Topics: Acute Lung Injury; Bronchi; Cytokines; Fibrin; Fibrinolysis; Hemostasis; Humans; Plasminogen Activators; Pulmonary Alveoli; Receptors, Thrombin; Respiratory Distress Syndrome; Thrombin

2008

Trials

2 trial(s) available for fibrin and Acute-Lung-Injury

ArticleYear
The CHARTER-Ireland trial: can nebulised heparin reduce acute lung injury in patients with SARS-CoV-2 requiring advanced respiratory support in Ireland: a study protocol and statistical analysis plan for a randomised control trial.
    Trials, 2022, Sep-14, Volume: 23, Issue:1

    COVID-19 pneumonia is associated with the development of acute respiratory distress syndrome (ARDS) displaying some typical histological features. These include diffuse alveolar damage with extensive pulmonary coagulation activation. This results in fibrin deposition in the microvasculature, leading to the formation of hyaline membranes in the air sacs. Well-conducted clinical trials have found that nebulised heparin limits pulmonary fibrin deposition, attenuates progression of ARDS, hastens recovery and is safe in non-COVID ARDS. Unfractionated heparin also inactivates the SARS-CoV-2 virus and prevents entry into mammalian cells. Nebulisation of heparin may therefore limit fibrin-mediated lung injury and inhibit pulmonary infection by SARS-CoV-2. Based on these findings, we designed the CHARTER-Ireland Study, a phase 1b/2a randomised controlled study of nebulised heparin in patients requiring advanced respiratory support for COVID-19 pneumonia.. This is a multi-centre, phase 1b/IIa, randomised, parallel-group, open-label study. The study will randomise 40 SARs-CoV-2-positive patients receiving advanced respiratory support in a critical care area. Randomisation will be via 1:1 allocation to usual care plus nebulised unfractionated heparin 6 hourly to day 10 while receiving advanced respiratory support or usual care only. The study aims to evaluate whether unfractionated heparin will decrease the procoagulant response associated with ARDS up to day 10. The study will also assess safety and tolerability of nebulised heparin as defined by number of severe adverse events; oxygen index and respiratory oxygenation index of intubated and unintubated, respectively; ventilatory ratio; and plasma concentration of interleukin (IL)-1β, IL6, IL-8, IL-10 and soluble tumour necrosis factor receptor 1, C-reactive protein, procalcitonin, ferritin, fibrinogen and lactate dehydrogenase as well as the ratios of IL-1β/IL-10 and IL-6/IL-10. These parameters will be assessed on days 1, 3, 5 and 10; time to separation from advanced respiratory support, time to discharge from the intensive care unit and number tracheostomised to day 28; and survival to days 28 and 60 and to hospital discharge, censored at day 60. Some clinical outcome data from our study will be included in the international meta-trials, CHARTER and INHALE-HEP.. This trial aims to provide evidence of potential therapeutic benefit while establishing safety of nebulised heparin in the management of ARDS associated with SARs-CoV-2 infection.. ClinicalTrials.gov NCT04511923 . Registered on 13 August 2020. Protocol version 8, 22/12/2021 Protocol identifier: NUIG-2020-003 EudraCT registration number: 2020-003349-12 9 October 2020.

    Topics: Acute Lung Injury; Animals; COVID-19; Fibrin; Heparin; Humans; Interleukin-10; Ireland; Mammals; Multicenter Studies as Topic; Randomized Controlled Trials as Topic; Respiratory Distress Syndrome; SARS-CoV-2

2022
Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury.
    Intensive care medicine, 2010, Volume: 36, Issue:1

    Deposition of fibrin in the alveolar space is a hallmark of acute lung injury (ALI). Plasminogen activator inhibitor-1 (PAI-1) is an antifibrinolytic agent that is activated during inflammation. Increased plasma and pulmonary edema fluid levels of PAI-1 are associated with increased mortality in adults with ALI. This relationship has not been examined in children. The objective of this study was to test whether increased plasma PAI-1 levels are associated with worse clinical outcomes in pediatric patients with ALI.. We measured plasma PAI-1 levels on the first day of ALI among 94 pediatric patients enrolled in two separate prospective, multicenter investigations and followed them for clinical outcomes. All patients met American European Consensus Conference criteria for ALI.. A total of 94 patients were included. The median age was 3.2 years (range 16 days-18 years), the PaO(2)/F(i)O(2) was 141 +/- 72 (mean +/- SD), and overall mortality was 14/94 (15%). PAI-1 levels were significantly higher in nonsurvivors compared to survivors (P < 0.01). The adjusted odds of mortality doubled for every log increase in the level of plasma PAI-1 after adjustment for age and severity of illness.. Higher PAI-1 levels are associated with increased mortality and fewer ventilator-free days among pediatric patients with ALI. These findings suggest that impaired fibrinolysis may play a role in the pathogenesis of ALI in pediatric patients and suggest that PAI-1 may serve as a useful biomarker of prognosis in patients with ALI.

    Topics: Acute Lung Injury; Child; Child, Preschool; Female; Fibrin; Humans; Infant; Infant, Newborn; Male; Plasminogen Activator Inhibitor 1; Prospective Studies; Pulmonary Alveoli; Respiratory Distress Syndrome; Survival Rate; Treatment Failure

2010

Other Studies

13 other study(ies) available for fibrin and Acute-Lung-Injury

ArticleYear
PLATELET SUPPRESSION BY TIROFIBAN AMELIORATES PULMONARY COAGULATION AND FIBRINOLYSIS ABNORMALITIES IN THE LUNGS OF MOUSE ANTIBODY-MEDIATED TRANSFUSION-RELATED ACUTE LUNG INJURY.
    Shock (Augusta, Ga.), 2023, 04-01, Volume: 59, Issue:4

    This study aimed to explore the ameliorating effects of the platelet surface glycoprotein IIb/IIIa receptor antagonist tirofiban on coagulation and fibrinolytic abnormalities in a mouse model of antibody-mediated transfusion-associated acute lung injury (ALI). This is important because ALI is a major cause of death attributable to the occurrence of adverse transfusion reactions. No information on a definite diagnosis or pathological mechanism exists, and targeted treatment options are not available. In this study, wild-type male Balb/c mice aged 8 to 10 weeks were randomly divided into the TRALI model, blank control, tirofiban intervention, and isotype control groups. After different treatment exposures, the mice were observed for 2 h before being killed, and lung tissue samples were collected. To explore the intervention effect of tirofiban, the degree of lung injury was quantified by estimating the lung wet/dry ratio, rectal temperature, survival rate, total protein, and myeloperoxidase and via hematoxylin-eosin staining. Furthermore, the coagulation, anticoagulation, and fibrinolysis assays were measured by automatic coagulation instrument and enzyme-linked immunosorbent assay kits, and the fluorescence densities of platelets and fibrin were quantified using immunofluorescence to analyze the effects of tirofiban on the platelet and fibrin interactions of TRALI. Compared with the TRALI model group, the lung injury indices in the tirofiban intervention group decreased significantly, and survival rates also improved. Furthermore, the level of coagulation and fibrinolytic abnormalities were obviously lower than those in the TRALI model group. In conclusion, our findings suggest that tirofiban might interfere with TRALI by inhibiting platelet activation and improving coagulation and fibrinolytic abnormalities.

    Topics: Acute Lung Injury; Antibodies; Fibrin; Fibrinolysis; Humans; Lung; Male; Platelet Aggregation Inhibitors; Tirofiban; Transfusion-Related Acute Lung Injury; Tyrosine

2023
Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice.
    International journal of molecular sciences, 2022, Mar-22, Volume: 23, Issue:7

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.

    Topics: Acute Lung Injury; Animals; Cell Culture Techniques; COVID-19; Female; Fibrin; Humans; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; Pandemics; Placenta; Pneumonia; Pregnancy; Proteomics; Respiratory Distress Syndrome; SARS-CoV-2; Secretome

2022
Nebulized Non-Immunogenic Staphylokinase in the Mice Acute Lung Injury Model.
    International journal of molecular sciences, 2022, Aug-18, Volume: 23, Issue:16

    Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).

    Topics: Acute Lung Injury; Animals; COVID-19; Disease Models, Animal; Fibrin; Fibrinogen; Lipopolysaccharides; Lung; Metalloendopeptidases; Mice; Rats; Respiratory Distress Syndrome

2022
Pulmonary coagulation and fibrinolysis abnormalities that favor fibrin deposition in the lungs of mouse antibody-mediated transfusion-related acute lung injury.
    Molecular medicine reports, 2021, Volume: 24, Issue:2

    Transfusion‑related acute lung injury (TRALI) is a life‑threatening disease caused by blood transfusion. However, its pathogenesis is poorly understood and specific therapies are not available. Experimental and clinical studies have indicated that alveolar fibrin deposition serves a pathological role in acute lung injuries. The present study investigated whether pulmonary fibrin deposition occurs in a TRALI mouse model and the possible mechanisms underlying this deposition. The TRALI model was established by priming male Balb/c mice with lipopolysaccharide (LPS) 18 h prior to injection of an anti‑major histocompatibility complex class I (MHC‑I) antibody. Untreated mice and mice administered LPS plus isotype antibody served as controls. At 2 h after TRALI induction, blood and lung tissue were collected. Disease characteristics were assessed based on lung tissue histology, inflammatory responses and alterations in the alveolar‑capillary barrier. Immunofluorescence staining was used to detect pulmonary fibrin deposition, platelets and fibrin‑platelet interactions. Levels of plasminogen activator inhibitor‑1 (PAI‑1), thrombin‑antithrombin complex (TATc), tissue factor pathway inhibitor (TFPI), coagulation factor activity and fibrin degradation product (FDP) in lung tissue homogenates were measured. Severe lung injury, increased inflammatory responses and a damaged alveolar‑capillary barrier in the LPS‑primed, anti‑MHC‑I antibody‑administered mice indicated that the TRALI model was successfully established. Fibrin deposition, fibrin‑platelet interactions and platelets accumulation in the lungs of mouse models were clearly promoted. Additionally, levels of TATc, coagulation factor V (FV), TFPI and PAI‑1 were elevated, whereas FDP level was decreased in TRALI mice. In conclusion, both impaired fibrinolysis and enhanced coagulation, which might be induced by boosted FV activity, increased pulmonary platelets accumulation and enhanced fibrin‑platelet interactions and contributed to pulmonary fibrin deposition in TRALI mice. The results provided a therapeutic rationale to target abnormalities in either coagulation or fibrinolysis pathways for antibody‑mediated TRALI.

    Topics: Acute Lung Injury; Animals; Antibodies; Anticoagulants; Blood Coagulation; Blood Platelets; Fibrin; Fibrinolysis; Lipoproteins; Lung; Male; Mice; Mice, Inbred BALB C; Transfusion-Related Acute Lung Injury

2021
Fibrinolysis and COVID-19: A plasmin paradox.
    Journal of thrombosis and haemostasis : JTH, 2020, Volume: 18, Issue:9

    The COVID-19 pandemic has provided many challenges in the field of thrombosis and hemostasis. Among these is a novel form of coagulopathy that includes exceptionally high levels of D-dimer. D-dimer is a marker of poor prognosis, but does this also imply a causal relationship? These spectacularly raised D-dimer levels may actually signify the failing attempt of the fibrinolytic system to remove fibrin and necrotic tissue from the lung parenchyma, being consumed or overwhelmed in the process. Indeed, recent studies suggest that increasing fibrinolytic activity might offer hope for patients with critical disease and severe respiratory failure. However, the fibrinolytic system can also be harnessed by coronavirus to promote infectivity and where antifibrinolytic measures would also seem appropriate. Hence, there is a clinical paradox where plasmin formation can be either deleterious or beneficial in COVID-19, but not at the same time. Hence, it all comes down to timing.

    Topics: Acute Lung Injury; Animals; Antifibrinolytic Agents; COVID-19; COVID-19 Drug Treatment; Fibrin; Fibrin Fibrinogen Degradation Products; Fibrinolysin; Fibrinolysis; Humans; Immune System; Lung; Necrosis; Prognosis; Thrombolytic Therapy; Tissue Plasminogen Activator

2020
Comparisons of acute inflammatory responses of nose-only inhalation and intratracheal instillation of ammonia in rats.
    Inhalation toxicology, 2019, Volume: 31, Issue:3

    Topics: Acute Lung Injury; Administration, Inhalation; Ammonia; Animals; Bronchoalveolar Lavage Fluid; Collagen; Female; Fibrin; Fibrinogen; Leukocyte Count; Lung; Nose; Rats, Sprague-Dawley; Respiratory Mechanics; Trachea

2019
Annexin V homodimer protects against ischemia reperfusion-induced acute lung injury in lung transplantation.
    The Journal of thoracic and cardiovascular surgery, 2016, Volume: 151, Issue:3

    We hypothesized that administration of a homodimer of recombinant annexin V, diannexin, could shield phosphatidylserine on the endothelium, and inhibit leukocyte and platelet adhesion, thereby potentially reducing ischemia reperfusion injury (IRI) in lung transplantation. This hypothesis was tested using a rat syngeneic single left-lung transplant model.. Rats were randomly assigned to receive diannexin (DN group; n = 10) or normal saline (control group; n = 10). Diannexin (1000 μg/kg) was administered to the donor lung in the pulmonary flush solution, and to the recipient intravenously, 5 minutes after initiation of reperfusion. Grafts were reperfused for 2 hours.. The transplanted grafts in the DN group performed significantly better in gas exchange with higher partial pressure of oxygen (control group: 179 ± 121 vs DN group: 330 ± 54 mm Hg; P = .007) and lower partial pressure of carbon dioxide (control: 55.1 ± 26 vs DN: 34.2 ± 11 mm Hg; P = .04), as well as lower peak airway pressure (control: 20.5 ± 8.5 vs DN: 12.0 ± 7.9 cm H2O; P = .035) after 2 hours of reperfusion. Wet-to-dry lung weight ratio (P = .054), and alveolar fibrin deposition score (P = .04), were reduced in the DN group. Caspase-cleaved cytokeratin 18 in plasma (a marker of epithelial apoptosis) was significantly reduced in the DN group (P = .013). Furthermore, gene-expression levels of proinflammatory cytokines in the transplanted graft, including interleukin-6 (P = .04) and macrophage inflammatory protein 2 (P = .03) were significantly decreased in the DN group.. A homodimer of recombinant annexin V reduced ischemia reperfusion injury in a lung transplant animal model, by reducing cell death and tissue inflammation.

    Topics: Acute Lung Injury; Animals; Annexin A5; Apoptosis; Cytokines; Cytoprotection; Disease Models, Animal; Fibrin; Inflammation Mediators; Keratin-18; Lung; Lung Transplantation; Male; Peptide Fragments; Protective Agents; Rats, Inbred Lew; Reperfusion Injury

2016
Suppression of plasminogen activator inhibitor-1 by inhaled nitric oxide attenuates the adverse effects of hyperoxia in a rat model of acute lung injury.
    Thrombosis research, 2015, Volume: 136, Issue:1

    Locally increased expression of plasminogen activator inhibitor-1 (PAI-1) in acute lung injury (ALI) is largely responsible for fibrin deposition in the alveolae and lung microvasculature. In vitro, nitric oxide (NO) effectively suppresses the ischemic induction of PAI-1. We aimed to investigate the effects of inhaled NO on PAI-1 expression in ALI in a rat model with and without hyperoxia.. Healthy adult rats were primed with lipopolysaccharide (LPS) via an intraperitoneal challenge followed by a second dose of LPS given intratracheally to induce ALI (LPS group), whereas the control groups were given sterile saline. All groups were allocated to subgroups according to gas exposure: NO (20 parts per million, NO), 95% oxygen (O), both (ONO), or room air (A). At 4h, 24h, 48h (after 4h or 24h exposure to the various gases, 24h gas intervention and then observation until 48h), the rat lungs were processed and PAI-1 protein and mRNA expression, histopathological lung injury scores and fibrin deposition were evaluated.. At 4 and 24h, inhaled NO caused the PAI-1 mRNA levels in the LPS-NO and LPS-ONO subgroups to decrease compared with the untreated LPS subgroups. At 48h, higher PAI-1 mRNA levels than those of the corresponding control subgroup were only observed in the LPS-O subgroup, and these values were lower in the LPS-ONO subgroup than in the LPS-O subgroup. The trends of the PAI-1 protein levels mirrored those of PAI-1 mRNA. At 48h, PAI-1 protein levels in the LPS-NO and LPS-ONO subgroups were decreased compared with those in the untreated LPS subgroups. The histopathological lung injury scores and fibrin deposition in LPS subgroups that inhaled NO showed a decreasing trend compared with the untreated LPS subgroups.. Inhaled NO can suppress elevated PAI-1 expression in rats with ALI induced by endotoxin. Although exposure to high-concentration oxygen prolongs the duration of PAI-1 mRNA overexpression in ALI, inhaled NO can reduce this effect and alleviate both fibrin deposition and lung injury.

    Topics: Acute Lung Injury; Animals; Bronchodilator Agents; Disease Models, Animal; Down-Regulation; Fibrin; Hyperoxia; Lipopolysaccharides; Lung; Male; Nitric Oxide; Oxygen; Plasminogen Activator Inhibitor 1; Rats; Rats, Sprague-Dawley; RNA, Messenger; Up-Regulation

2015
Wood bark smoke induces lung and pleural plasminogen activator inhibitor 1 and stabilizes its mRNA in porcine lung cells.
    Shock (Augusta, Ga.), 2011, Volume: 36, Issue:2

    Although aberrant fibrinolysis and plasminogen activator inhibitor 1 (PAI-1) are implicated in acute lung injury, the role of this serpin in the pathogenesis of wood bark smoke (WBS)-induced acute lung injury (SIALI) and its regulation in resident lung cells after exposure to smoke are unclear. A total of 22 mechanically ventilated pigs were included in this study. Immunohistochemical analyses were used to assess fibrin and PAI-1 in the lungs of pigs with SIALI in situ. Plasminogen activator inhibitor 1 was measured in bronchoalveolar lavage fluids by Western blotting. Induction of PAI-1 was determined at the protein and mRNA levels by Western and polymerase chain reaction analyses in primary porcine alveolar type II cells, fibroblasts, and pleural mesothelial cells. Plasminogen activator inhibitor 1 mRNA stability was determined by transcription chase studies. Gel shift analyses were used to characterize the mechanism regulating PAI-1 mRNA stability. Smoke-induced ALI induced PAI-1, with prominent extravascular fibrin deposition in large and small airways as well as alveolar and subpleural compartments. In pleural mesothelial cells, lung fibroblasts, and alveolar type II cells, PAI-1 mRNA was stabilized by WBS extract and contributed to induction of PAI-1. The mechanism involves dissociation of a novel 6-phospho-d-gluconate-NADP oxidoreductase-like PAI-1 mRNA binding protein from PAI-1 mRNA. Exposure to WBS induces prominent airway and mesothelial expression of PAI-1, associated with florid distribution of fibrin in SIALI in vivo Wood bark smoke components induce PAI-1 in vitro in part by stabilization of PAI-1 mRNA, a newly recognized pathway that may promote extravascular fibrin deposition and lung dysfunction in SIALI.

    Topics: Acute Lung Injury; Animals; Cells, Cultured; Female; Fibrin; Lung; Plasminogen Activator Inhibitor 1; Pleura; Random Allocation; Smoke; Swine

2011
Humanized monoclonal antibody against the chemokine CXCL-8 (IL-8) effectively prevents acute lung injury.
    International immunopharmacology, 2010, Volume: 10, Issue:2

    As one of the most important endogenous chemotactic factors for neutrophils, the chemokine CXCL8 (IL-8) is involved in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), characterized by massive neutrophil infiltration in the lung. Since neutralization of CXCL8 with polyclonal antibody has been shown to reduce the severity of ALI/ARDS in animal models, we explored the potential of humanized anti-CXCL8 antibody as a preventive or therapeutic agent for ALI. We used a 'two-hit' protocol to induce ALI in rabbits that showed extensive edema in the alveolar lumina, marked infiltration of neutrophils in the lung tissue, fibrin deposition in alveolar space, and destruction of pulmonary architecture, culminating in severe hypoxemia. Concomitant challenge with endotoxin after priming with oleic acid (OA) induced a marked elevation of CXCL8 level in bronchoalveolar lavage fluid. Treatment of the rabbits with a humanized anti-CXCL8 antibody prevented neutrophil infiltration in the lung in association with alleviated ALI syndrome. Our results indicate a promising future for utilization of humanized anti-CXCL8 antibody in the prevention and treatment of ALI and ARDS in human.

    Topics: Acute Lung Injury; Animals; Antibodies, Monoclonal; Bronchoalveolar Lavage; Capillary Permeability; Edema; Endotoxins; Female; Fibrin; Hypoxia; Interleukin-1; Interleukin-8; Lung; Male; Mice; Neutrophils; Oleic Acid; Rabbits; Respiratory Distress Syndrome; Tumor Necrosis Factor-alpha

2010
Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury.
    American journal of physiology. Lung cellular and molecular physiology, 2009, Volume: 296, Issue:3

    Fibrin impairs surfactant function in vitro, and inhibition of fibrinolysis by plasminogen activator inhibitor (PAI-1) is thought to promote fibrin accumulation in acute lung injury (ALI). This has led to speculation that impaired PAI-1 and fibrin accumulation should protect lung function in ALI. We tested this hypothesis by investigating ALI severity in fibrinogen-deficient (Fgn-/-) and PAI-1-deficient (PAI-1-/-) mice. PAI-1-/-, C57BL/6, Fgn-/-, and Fgn+/- females were anesthetized and allowed to aspirate 4 microl/g of hydrochloric acid (pH 1.0) and then reanesthetized and connected to a ventilator 48 h later. Naive C57BL/6 and Fgn+/- females served as controls. Following deep inflation (DI), forced oscillations were delivered periodically over 8 min to measure changes in elastance (H) as a surrogate of lung derecruitment, at positive end-expiratory pressures (PEEP) of 6, 3, and 1 cmH(2)O. Increases in H following DI in acid-injured mice were greater than naive strain-matched controls. Increases in H were no different between injured PAI-1-/- and C57BL/6, or between injured Fgn-/- and +/- mice, at any PEEP. Pressure-volume curves were no different between injured groups. Total lung fibrin was lower in injured PAI-1-/- and Fgn-/- mice relative to injured C57BL/6 and Fgn+/- mice, respectively, but indices of permeability were no different between strains. Unexpectedly, neither fibrin nor PAI-1 deficiency protects lung mechanical function in mice with acid-induced ALI. We speculate that in vivo lung function may be more closely tied to permeability and alveolar protein in general, rather than being linked specifically to fibrin.

    Topics: Acute Lung Injury; Afibrinogenemia; Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Female; Fibrin; Fibrinogen; Inflammation Mediators; Lung; Mice; Mice, Inbred C57BL; Mice, Knockout; Respiratory Mechanics; Serpin E2; Serpins

2009
The complex role of fibrin in acute lung injury.
    American journal of physiology. Lung cellular and molecular physiology, 2009, Volume: 296, Issue:3

    Topics: Acute Lung Injury; Animals; Fibrin; Humans; Mice; Plasminogen Activator Inhibitor 1; Protein C; Rats; Respiratory Distress Syndrome

2009
Enhanced fibrinolysis protects against lung ischemia-reperfusion injury.
    The Journal of thoracic and cardiovascular surgery, 2009, Volume: 137, Issue:5

    Ischemia-reperfusion injury continues to plague the field of lung transplantation, resulting in suboptimal outcomes. In acute lung injury, processes such as ventilator-induced injury, sepsis, or acute respiratory distress syndrome, extravascular fibrin has been shown to promote lung dysfunction and the acute inflammatory response. This study investigates the role of the fibrinolytic cascade in lung ischemia-reperfusion injury and investigates the interplay between the fibrinolytic system and the inflammatory response.. Mice lacking the plasminogen activator inhibitor-1 gene (PAI-1 knock out, PAI-1 KO; and thus increased lysis of endogenous fibrin) and wild-type mice underwent in situ left lung ischemia and reperfusion. Fibrin content in the lung was evaluated by immunoblotting. Reperfusion injury was assessed by histologic and physiologic parameters. Proinflammatory mediators were measured in bronchoalveolar lavage fluid and plasma using enzyme-linked immunosorbent assays.. Ischemia-reperfusion causes fibrin deposition in murine lungs. Less fibrin was seen in PAI-1 KO mice than in wild-type mice subjected to the same ischemia-reperfusion conditions. By histologic criteria, more evidence of ischemia-reperfusion injury was noted (thickening of the interstium, cellular infiltration in the alveoli) in the wild-type than in PAI-1 KO mice. Physiologic parameters also revealed more ischemia-reperfusion injury in the wild-type than in PAI-1 KO mice. Cytokine and chemokines were elevated more in the wild-type group than the PAI-1 KO group.. Lung ischemia-reperfusion injury triggers fibrin deposition in the murine lungs and fibrin creates a proinflammatory environment. Preventing fibrin deposition may reduce ischemia-reperfusion injury and inflammation. This finding may lead to novel treatment strategies for ischemia-reperfusion.

    Topics: Acute Lung Injury; Analysis of Variance; Animals; Blotting, Western; Bronchoalveolar Lavage Fluid; Chemokines; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fibrin; Fibrinolysis; Immunohistochemistry; Inflammation Mediators; Ischemia; Mice; Mice, Inbred C57BL; Mice, Knockout; Plasminogen Activator Inhibitor 1; Probability; Random Allocation; Reperfusion Injury; Sensitivity and Specificity

2009