fg-9041 has been researched along with Parkinson-Disease* in 3 studies
3 other study(ies) available for fg-9041 and Parkinson-Disease
Article | Year |
---|---|
Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson's disease.
Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal death in Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). JNK3, the only neural-specific isoform, may play an important role in mediating the neurotoxic effects of MPTP in dopaminergic neuronal injury. To analyze the variation in JNK3 activation, the levels of phospho-JNK3 were measured at the various time points of occurrence of MPTP-induced lesions. In our study, we observed that during MPTP intoxication, two peaks of JNK3 activation appeared at 8 and 24h. To further define the mechanism of JNK3 activation and translocation, the antioxidant N-acetylcysteine (NAC), the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine, and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate (KA) receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX) were administered to the mice 30 min after each of the four MPTP injections. The results revealed that NAC clearly inhibited JNK3 activation during the early intoxication, whereas ketamine preferably attenuated JNK3 activation during the latter intoxication. DNQX had no significant effects on JNK3 activation during intoxication. Consequently, reactive oxygen species (ROS) and the NMDA receptor were closely associated with JNK3 activation following MPTP intoxication. NAC and ketamine exerted a preventive effect against MPTP-induced loss of tyrosine hydroxylase-positive neurons and suppressed the nuclear translocation of JNK3, suggesting that NAC and ketamine can prevent MPTP-induced dopaminergic neuronal death by suppressing JNK3 activation. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Acetylcysteine; Animals; Blotting, Western; Cell Nucleus; Dopamine; Dopamine Agents; Enzyme Activation; Excitatory Amino Acid Antagonists; Immunohistochemistry; Immunoprecipitation; Ketamine; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 10; Neostriatum; Neurons; Parkinson Disease; Protein Transport; Quinoxalines; Tyrosine 3-Monooxygenase | 2009 |
Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors.
Reciprocally connected GABAergic neurons of the globus pallidus (GP) and glutamatergic neurons of the subthalamic nucleus (STN) are a putative generator of pathological rhythmic burst firing in Parkinson's disease (PD). Burst firing of STN neurons may be driven by rebound depolarization after barrages of GABA(A) receptor (GABA(A)R)-mediated IPSPs arising from pallidal fibers. To determine the conditions under which pallidosubthalamic transmission activates these and other postsynaptic GABARs, a parasagittal mouse brain slice preparation was developed in which pallidosubthalamic connections were preserved. Intact connectivity was first confirmed through the injection of a neuronal tracer into the GP. Voltage-clamp and gramicidin-based perforated-patch current-clamp recordings were then used to study the relative influences of GABA(A)R- and GABA(B)R-mediated pallidosubthalamic transmission on STN neurons. Spontaneous phasic, but not tonic, activation of postsynaptic GABA(A)Rs reduced the frequency and disrupted the rhythmicity of autonomous firing in STN neurons. However, postsynaptic GABA(B)Rs were only sufficiently activated to impact STN firing when pallidosubthalamic transmission was elevated or pallidal fibers were synchronously activated by electrical stimulation. In a subset of neurons, rebound burst depolarizations followed high-frequency, synchronous stimulation of pallidosubthalamic fibers. Although GABA(B)R-mediated hyperpolarization was itself sufficient to generate rebound bursts, coincident activation of postsynaptic GABA(A)Rs produced longer and more intense burst firing. These findings elucidate a novel route through which burst activity can be generated in the STN, and suggest that GABARs on STN neurons could act in a synergistic manner to generate abnormal burst activity in PD. Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Globus Pallidus; Lysine; Male; Mice; Mice, Inbred C57BL; Neural Pathways; Neurons; Parkinson Disease; Patch-Clamp Techniques; Picrotoxin; Pyridazines; Quinoxalines; Receptors, GABA-A; Receptors, GABA-B; Subthalamic Nucleus; Synapses; Tetrodotoxin | 2005 |
Intrastriatal DNQX induces rotation and pallidal Fos in the 6-OHDA model of Parkinson's disease.
The 6-hydroxydopamine rat model of Parkinson's disease was combined with intracerebral drug infusions to examine the influence of glutamate receptors on striatal output activity. When infused into the dopamine-denervated striatum, the AMPA-kainate receptor antagonist DNQX dose-dependently elicited contralateral rotation and ipsilateral Fos immunoreactivity (Fos-IR) in the globus pallidus, a target nucleus of striatal output. DNQX did not elicit rotation or Fos-IR in unlesioned or partially lesioned rats. In addition, the NMDA receptor antagonist AP-5 failed to induce rotation and had minimal effects on pallidal Fos-IR in lesioned rats. These results suggest a role for striatal AMPA-kainate receptors in the pathology and treatment of Parkinson's disease. Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Oxidopamine; Parkinson Disease; Proto-Oncogene Proteins c-fos; Quinoxalines; Rats; Rats, Sprague-Dawley; Rotation | 1995 |