fg-9041 and Nerve-Degeneration

fg-9041 has been researched along with Nerve-Degeneration* in 6 studies

Other Studies

6 other study(ies) available for fg-9041 and Nerve-Degeneration

ArticleYear
Miniature synaptic currents become neurotoxic to chronically silenced neurons.
    Cerebral cortex (New York, N.Y. : 1991), 2007, Volume: 17, Issue:6

    When deprived of spontaneous ongoing network activity by chronic exposure to tetrodotoxin (TTX), cultured cortical neurons retract their dendrites, lose dendritic spines, and degenerate over a period of 1-2 weeks. Electrophysiological properties of these slowly degenerating neurons prior to their death are normal, but they express very large miniature excitatory postsynaptic currents (mEPSCs). Chronic blockade of these mEPSCs by the alpha-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione (DNQX) had no effect of its own on cell survival, yet, paradoxically, it protected the TTX-silenced neurons from degenerating. TTX-treated neurons also exhibited deficient Ca(2+) clearance mechanisms. Thus, upscaled mEPSCs are sufficient to trigger apoptotic processes in otherwise chronically silenced neurons.

    Topics: Action Potentials; Anesthetics, Local; Animals; Apoptosis; Calcium; Cells, Cultured; Dendritic Spines; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Nerve Degeneration; Neurons; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Synaptic Transmission; Tetrodotoxin

2007
Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer's brain.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2004, Jun-30, Volume: 24, Issue:26

    We used primary cultures of cortical neurons to examine the relationship between beta-amyloid toxicity and hyperphosphorylation of the tau protein, the biochemical substrate for neurofibrillary tangles of Alzheimer's brain. Exposure of the cultures to beta-amyloid peptide (betaAP) induced the expression of the secreted glycoprotein Dickkopf-1 (DKK1). DKK1 negatively modulates the canonical Wnt signaling pathway, thus activating the tau-phosphorylating enzyme glycogen synthase kinase-3beta. DKK1 was induced at late times after betaAP exposure, and its expression was dependent on the tumor suppressing protein p53. The antisense induced knock-down of DKK1 attenuated neuronal apoptosis but nearly abolished the increase in tau phosphorylation in betaAP-treated neurons. DKK1 was also expressed by degenerating neurons in the brain from Alzheimer's patients, where it colocalized with neurofibrillary tangles and distrophic neurites. We conclude that induction of DKK1 contributes to the pathological cascade triggered by beta-amyloid and is critically involved in the process of tau phosphorylation.

    Topics: Aged; Aged, 80 and over; Alzheimer Disease; Amyloid beta-Peptides; Animals; Apoptosis; bcl-2-Associated X Protein; Cells, Cultured; Dizocilpine Maleate; Gene Expression Regulation; Glutamic Acid; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Immunoenzyme Techniques; Intercellular Signaling Peptides and Proteins; Nerve Degeneration; Nerve Tissue Proteins; Neurofibrillary Tangles; Neurons; Oligodeoxyribonucleotides; Peptide Fragments; Phosphorylation; Protein Processing, Post-Translational; Proteins; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Quinoxalines; Rats; RNA, Messenger; Signal Transduction; tau Proteins; Tumor Suppressor Protein p53; Wnt Proteins

2004
Brain neuronal degeneration caused by episodic alcohol intoxication in rats: effects of nimodipine, 6,7-dinitro-quinoxaline-2,3-dione, and MK-801.
    Alcoholism, clinical and experimental research, 1998, Volume: 22, Issue:1

    Rats repeatedly intoxicated with alcohol (ethanol, three times daily) over a 4-day period display neuronal degeneration in the dentate gyrus; entorhinal, piriform, insular, orbital, and perirhinal cortices; and in the olfactory nerve fibers and terminals in the olfactory bulb. Postulating a role for excitotoxicity, we have attempted to prevent the degeneration using antagonists that are neuroprotective in this type of brain damage. In an initial study, continuous subcutaneous infusion of a high dose of the glutamate/NMDA receptor antagonist MK-801 (2 mg/kg/day) by itself caused extensive neuronal degeneration in several brain regions and severe behavioral intoxication that precluded survival if combined with high blood alcohol levels (approximately 300 mg/dl). Moreover, the lower, nonneurotoxic blood alcohol levels (approximately 150 mg/dl) that were compatible with survival worsened the MK-801-induced brain damage. In a subsequent experiment, daily intraperitoneal injections of a lower dose of MK-801 (1 mg/kg/day) resulted in no MK-801 toxicity and, when combined with neurotoxic levels of alcohol, no reduction in alcohol-induced neurotoxicity. Nimodipine, a voltage-gated Ca2+ channel blocker, reduced the neuronal damage in the dentate gyrus, but greatly increased it in the piriform cortex when administered intragastrically at 600 mg/kg/day; it provided no protection from alcohol-dependent degeneration when given intragastrically at 100 mg/kg/day. Continuous intracerebroventricular delivery of 0.24 to 0.29 mg/day of 6,7-dinitro-quinoxaline-2,3-dione, a glutamate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptor antagonist, failed to diminish alcohol-dependent neuronal damage in any brain region. We conclude that brain damage from episodic "binge" alcohol intoxication is not primarily mediated by excitotoxic mechanisms, implying that other, nonexcitotoxic pathophysiological mechanisms, are involved. Furthermore, MK-801, far from protecting from the alcohol-induced damage, at high doses causes widespread neuropathology that is significantly potentiated by alcohol.

    Topics: Alcoholic Intoxication; Animals; Brain; Calcium Channel Blockers; Dentate Gyrus; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Administration Schedule; Excitatory Amino Acid Antagonists; Male; Nerve Degeneration; Neurons; Neuroprotective Agents; Nimodipine; Quinoxalines; Rats; Rats, Sprague-Dawley

1998
Studies of NMDA- and non-NMDA-mediated neurotoxicity in cultured neurons.
    Neurochemistry international, 1996, Volume: 29, Issue:3

    The neurotoxic effects of various glutamate agonists were studied using whole fetal rat brain cultures. The results showed that L-glutamate (L-glu) and N-methyl-D-aspartate (NMDA) were the most potent agonists for inducing neurotoxicity, producing significant toxicity at 0.10 and 0.01 mM concentrations, respectively. Kainic acid (KA) and quisqualic acid (QA) also produced neurotoxicity, but only at a relatively high concentration (1.0 mM). No other glutamate agonist tested produced neurotoxicity in the cultures following brief incubations. The effects of each agonist were found to be Ca2+ dependent, and the selective NMDA Ca2+ channel agonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,1 0-imine hydrogen maleate (MK-801), blocked the toxicity produced by all the glutamate agonists. Thus, the results of this study found little or no evidence for a direct non-NMDA receptor mediated neurotoxicity. These results suggest that the neurotoxicity produced by the non-NMDA agonists may be due to one of the following mechanisms: (i) non-specific binding of non-NMDA agonists to NMDA receptor; (ii) release of L-glu via non-NMDA agonists induced depolarization of cell membrane and subsequent activation of NMDA receptor by released L-glu; (iii) inhibition of L-glu uptake by non-NMDA agonists resulting in activation of L-glu receptors including NMDA receptors.

    Topics: Animals; Cells, Cultured; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Kainic Acid; Nerve Degeneration; Neurons; Quinoxalines; Rats; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate

1996
Masking effect of NMDA receptor antagonists on the formation of long-term potentiation (LTP) in superior colliculus slices from the guinea pig.
    Brain research, 1990, Jun-04, Volume: 518, Issue:1-2

    After electrical stimulation of the optic layer (OL) of superior colliculus (SC) slices, the postsynaptic potential (PSP) was recorded in the superficial gray layer (SGL) of the SC. The degeneration studies of retinotectal or corticotectal inputs to the SGL of the SC indicated that this PSP evoked in the SGL of the SC slices was retinotectal in origin. Neurotransmission in this pathway may be mediated by glutamate, because the PSP amplitude was reduced and blocked by application of kynurenate or quinoxaline dione (DNQX) to the medium. Furthermore, the concentration of glutamate in the right SGL was significantly reduced by 32% after left optic denervation and by 30% after ablation of the right visual cortex, compared with that in the left SGL. Long-term potentiation (LTP) in the SGL was induced by tetanic stimulation (50 Hz, 20 s) to the OL. The LTP formation was facilitated by the removal of Mg2+ from the medium. The effects of glutamate antagonists D-amino-5-phosphonovalerate (D-APV), gamma-D-glutamylglycine (gamma-DGG), and (+)-5-methyl-10,11-dihydro-5H-dibenzo, a,d-cycloheptene-5,10-imine maleate (MK-801) on the induction of LTP were investigated. D-APV (100 microM) or gamma-DGG (1 mM) masked the expression of LTP by tetanic stimulation, however LTP was induced after removal of the agents. LTP formation was observed without further tetanic stimulation following the removal of D-APV from the medium even 80 min after the tetanic stimulation. LTP once formed was not influenced by application of D-APV.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Denervation; Dibenzocycloheptenes; Dipeptides; Dizocilpine Maleate; Evoked Potentials; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Kynurenic Acid; Magnesium; Mice; Nerve Degeneration; Optic Nerve; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Superior Colliculi; Visual Cortex

1990
Hypoglycemic neurotoxicity in vitro: involvement of excitatory amino acid receptors and attenuation by monosialoganglioside GM1.
    Neuroscience, 1990, Volume: 37, Issue:3

    Rat cerebellar granule cells, when subjected to a glucose-free environment for 4 h, developed extensive degeneration of neuronal cell bodies and their associated neurite network over the following 24 h. This neuronal damage was quantitated with a colorimetric assay using the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Hypoglycemic neuronal injury could be markedly reduced by the presence of both competitive (3-(+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid) and non-competitive (phencyclidine) N-methyl-D-aspartate receptor antagonists, but not by kainate/quisqualate preferring antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. Glucose deprivation neuronal injury was also reduced by adding glutamate-degrading enzymes to the incubation medium. Monosialoganglioside GM1, but not its asialo derivative (lacking sialic acid), was also effective in protecting against hypoglycemic neurodegeneration when included during the period of glucose deprivation. These results suggest that the neuronal injury to cerebellar granule cells resulting from glucose deprivation is mediated predominantly by activation of the N-methyl-D-aspartate type of excitatory amino acid receptor, perhaps through the action of endogenously released glutamate. Furthermore, the monosialoganglioside GM1, a member of a class of naturally occurring sialoglycosphingolipids, is able to attenuate this neuronal injury--as already observed for glutamate neurotoxicity and anoxic neuronal death in cerebellar granule cells. Gangliosides may thus prove to be of therapeutic utility in excitatory amino acid-associated neuropathologies.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebellum; G(M1) Ganglioside; Gangliosides; Hypoglycemia; Nerve Degeneration; Neurons; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate

1990