fg-9041 has been researched along with Alcoholism* in 2 studies
2 other study(ies) available for fg-9041 and Alcoholism
Article | Year |
---|---|
Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats.
Alcoholism and psychiatric disorders like depression and anxiety are often comorbid. Although the mechanisms underlying this comorbidity are unclear, emerging evidence suggests that maladaptation of the glial glutamate transporter GLT-1 may play a role. Findings from animal and human studies have linked aversive states, including those related to drugs of abuse and depression, to aberrant activity in the lateral habenula (LHb). The relationship between GLT-1 maladaptation, LHb activity, and abnormal behaviors related to alcohol withdrawal, however, remains unknown. Here we show that dihydrokainic acid (DHK), a GLT-1 blocker, potentiated glutamatergic transmission to LHb neurons in slices from ethanol naïve rats; this potentiation, though, was not observed in slices from rats withdrawn from repeated in vivo ethanol administration, suggesting reduced GLT-1 function. Furthermore, GLT-1 protein expression was reduced in the LHb of withdrawn rats. This reduction was restored by systemic administration of ceftriaxone, a β-lactam antibiotic known to increase GLT-1 expression. Systemic ceftriaxone treatment also normalized the hyperactivity of LHb neurons in slices from withdrawn rats, which was reversed by bath-applied DHK. Finally, systemic administration of ceftriaxone alleviated depression- and anxiety-like behaviors, which was fully blocked by intra-LHb administrations of DHK, suggesting that GLT-1's function in the LHb is critical. These findings highlight the significant role of LHb astrocytic GLT-1 in the hyperactivity of LHb neurons, and in depressive- and anxiety-like behaviors during ethanol withdrawal. Thus, GLT-1 in the LHb could serve as a therapeutic target for psychiatric disorders comorbid with ethanol withdrawal. Topics: Alcoholism; Amino Acid Transport System X-AG; Animals; Antidepressive Agents; Anxiety; Ceftriaxone; Central Nervous System Depressants; Depression; Ethanol; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Habenula; In Vitro Techniques; Kainic Acid; Male; Maze Learning; Nerve Tissue Proteins; Quinoxalines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Substance Withdrawal Syndrome; Swimming; Tetrodotoxin | 2018 |
Enhanced AMPA receptor activity increases operant alcohol self-administration and cue-induced reinstatement.
Long-term alcohol exposure produces neuroadaptations that contribute to the progression of alcohol abuse disorders. Chronic alcohol consumption results in strengthened excitatory neurotransmission and increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPA) receptor signaling in animal models. However, the mechanistic role of enhanced AMPA receptor activity in alcohol-reinforcement and alcohol-seeking behavior remains unclear. This study examined the role of enhanced AMPA receptor function using the selective positive allosteric modulator, aniracetam, in modulating operant alcohol self-administration and cue-induced reinstatement. Male alcohol-preferring (P-) rats, trained to self-administer alcohol (15%, v/v) versus water were pre-treated with aniracetam to assess effects on maintenance of alcohol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (0.8%, w/v) versus water, and effects of aniracetam were tested. The role of aniracetam in modulating relapse of alcohol-seeking was assessed using a response contingent cue-induced reinstatement procedure in P-rats trained to self-administer 15% alcohol. Aniracetam pre-treatment significantly increased alcohol-reinforced responses relative to vehicle treatment. This increase was not attributed to aniracetam-induced hyperactivity as aniracetam pre-treatment did not alter locomotor activity. AMPA receptor involvement was confirmed because 6,7-dinitroquinoxaline-2,3-dione (AMPA receptor antagonist) blocked the aniracetam-induced increase in alcohol self-administration. Aniracetam did not alter sucrose-reinforced responses in sucrose-trained P-rats, suggesting that enhanced AMPA receptor activity is selective in modulating the reinforcing function of alcohol. Finally, aniracetam pre-treatment potentiated cue-induced reinstatement of alcohol-seeking behavior versus vehicle-treated P-rats. These data suggest that enhanced glutamate activity at AMPA receptors may be key in facilitating alcohol consumption and seeking behavior, which could ultimately contribute to the development of alcohol abuse disorders. Topics: Alcohol Drinking; Alcoholism; Analysis of Variance; Animals; Conditioning, Operant; Cues; Disease Models, Animal; Ethanol; Excitatory Amino Acid Antagonists; Glutamates; Linear Models; Male; Motor Activity; Nootropic Agents; Pyrrolidinones; Quinoxalines; Rats; Receptors, AMPA; Recurrence; Reinforcement, Psychology; Self Administration; Sucrose | 2013 |