ferrous sulfate has been researched along with Parkinson Disease, Secondary in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (66.67) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Tai, KK; Truong, DD | 1 |
Benzi, G; Café, C; Marzatico, F; Taborelli, M | 1 |
Duan, W; Mattson, MP | 1 |
3 other study(ies) available for ferrous sulfate and Parkinson Disease, Secondary
Article | Year |
---|---|
Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for Parkinson's disease.
Topics: Adenosine Triphosphate; Animals; Cell Death; Dose-Response Relationship, Drug; Electron Transport Complex I; Ferrous Compounds; Glyburide; Ischemic Preconditioning; Mitochondria; NADH, NADPH Oxidoreductases; Neurons; Parkinson Disease; Parkinson Disease, Secondary; PC12 Cells; Pinacidil; Potassium Channel Blockers; Potassium Channels; Protein Synthesis Inhibitors; Rats; Rotenone; Uncoupling Agents; Vasodilator Agents; Xanthine; Xanthine Oxidase | 2002 |
Experimental Parkinson's disease in monkeys. Effect of ergot alkaloid derivative on lipid peroxidation in different brain areas.
Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Ascorbic Acid; Brain; Caudate Nucleus; Dihydroergotoxine; Ferrous Compounds; Frontal Lobe; Glutathione; Lipid Peroxidation; Macaca fascicularis; Male; Occipital Lobe; Oxidation-Reduction; Parkinson Disease, Secondary; Putamen; Substantia Nigra; Thiobarbituric Acid Reactive Substances | 1993 |
Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease.
Topics: Animals; Antimetabolites; Apoptosis; Behavior, Animal; Carrier Proteins; Corpus Striatum; Deoxyglucose; Disease Models, Animal; Dopamine; Dopamine Agents; Endoplasmic Reticulum Chaperone BiP; Energy Intake; Ferrous Compounds; Heat-Shock Proteins; Heat-Shock Response; HSP70 Heat-Shock Proteins; Male; Mice; Mice, Inbred C57BL; Mitochondria; Molecular Chaperones; MPTP Poisoning; Nerve Degeneration; Neurons; Parkinson Disease, Secondary; Reactive Oxygen Species; Rotenone; Substantia Nigra; Uncoupling Agents | 1999 |