ferrostatin-1 has been researched along with Neoplasms* in 3 studies
1 review(s) available for ferrostatin-1 and Neoplasms
Article | Year |
---|---|
Mechanisms of ferroptosis.
Ferroptosis is a non-apoptotic form of cell death that can be triggered by small molecules or conditions that inhibit glutathione biosynthesis or the glutathione-dependent antioxidant enzyme glutathione peroxidase 4 (GPX4). This lethal process is defined by the iron-dependent accumulation of lipid reactive oxygen species and depletion of plasma membrane polyunsaturated fatty acids. Cancer cells with high level RAS-RAF-MEK pathway activity or p53 expression may be sensitized to this process. Conversely, a number of small molecule inhibitors of ferroptosis have been identified, including ferrostatin-1 and liproxstatin-1, which can block pathological cell death events in brain, kidney and other tissues. Recent work has identified a number of genes required for ferroptosis, including those involved in lipid and amino acid metabolism. Outstanding questions include the relationship between ferroptosis and other forms of cell death, and whether activation or inhibition of ferroptosis can be exploited to achieve desirable therapeutic ends. Topics: Cell Death; Cell Membrane; Cyclohexylamines; Fatty Acids, Unsaturated; Glutathione; Glutathione Peroxidase; Iron; Neoplasms; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Quinoxalines; Reactive Oxygen Species; Spiro Compounds | 2016 |
2 other study(ies) available for ferrostatin-1 and Neoplasms
Article | Year |
---|---|
Anesthetic propofol inhibits ferroptosis and aggravates distant cancer metastasis via Nrf2 upregulation.
The impact of anesthetic management on the prognosis of patients with cancer undergoing surgery is controversial. Circulating tumor cells (CTCs) play critical roles during cancer metastasis and can be released in large quantities during surgery. The ferroptosis of CTCs is related to metastasis. Whether anesthetics affect distant metastasis by increasing the survival of CTCs is unknown. To test this hypothesis, mice were inoculated with cancer cells via tail vein injection before treatment with propofol or sevoflurane for 2 h. After 2 weeks, more metastases were observed in the propofol group compared with the sevoflurane and vehicle groups. Then, we used the ferroptosis inhibitor ferrostatin-1 to explore the effect of ferroptosis on metastasis. Similar to propofol, pretreatment with ferrostatin-1 significantly increased CTC survival in mouse lungs at 24 h and the tumor burden at 10 weeks post-inoculation. Moreover, propofol protected cancer cells from RSL3-induced ferroptosis in vitro, as evidenced by decreases in intracellular levels of reactive oxygen species (ROS), lipid peroxide, and ferroptosis markers. Further studies showed that propofol treatment upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes, including HO-1, NQO1, and SLC7A11. Finally, the targeted knockdown of Nrf2 abolished the anti-ferroptosis effect of propofol. Collectively, we demonstrated the risk of a specific type of anesthetic, propofol, in promoting cancer cell metastasis through Nrf2-mediated ferroptosis inhibition. These findings may guide the choice of anesthetic for surgical removal of tumors. Topics: Anesthetics; Animals; Mice; Neoplasms; NF-E2-Related Factor 2; Propofol; Sevoflurane; Up-Regulation | 2023 |
Ferroptosis: an iron-dependent form of nonapoptotic cell death.
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Topics: Animals; Cell Death; Cyclohexylamines; Fibroblasts; Glutamic Acid; Hippocampus; Humans; In Vitro Techniques; Iron; Lipid Metabolism; Neoplasms; Phenylenediamines; Piperazines; Rats; Reactive Oxygen Species | 2012 |