ferrostatin-1 has been researched along with Brain-Ischemia* in 4 studies
4 other study(ies) available for ferrostatin-1 and Brain-Ischemia
Article | Year |
---|---|
Anti-Ferroptotic Effects of bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Loaded with Ferrostatin-1 in Cerebral ischemia-reperfusion Injury Associate with the GPX4/COX-2 Axis.
Accumulating evidence of the critical role of Ferrostatin-1 (Fer-1, ferroptosis inhibitor) in cerebral ischemia has intrigued us to explore the molecular mechanistic actions of Fer-1 delivery by bone marrow mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) in cerebral ischemia-reperfusion (I/R) injury. In vivo middle cerebral artery occlusion (MCAO) in mice and in vitro oxygen-glucose deprivation/reperfusion (OGD/R) in hippocampal neurons were developed to simulate cerebral I/R injury. After Fer-1 was confirmed to be successfully delivered by MSCs-EVs to neurons, we found that MSCs-EVs loaded with Fer-1 (MSCs-EVs/Fer-1) reduced neuron apoptosis and enhanced viability, along with curtailed inflammation and ferroptosis. The regulation of Fer-1 on GPX4/COX2 axis was predicted by bioinformatics study and validated by functional experiments. The in vivo experiments further confirmed that MSCs-EVs/Fer-1 ameliorated cerebral I/R injury in mice. Furthermore, poor expression of GPX4 and high expression of COX-2 were witnessed in cerebral I/R injury models. MSCs-EVs/Fer-1 exerted its protective effects against cerebral I/R injury by upregulating GPX4 expression and inhibiting COX-2 expression. Taken together, our study indicates that MSCs-EVs/Fer-1 may be an attractive therapeutic target for the treatment of cerebral I/R injury due to its anti-ferroptotic properties. Topics: Animals; Brain Ischemia; Cyclooxygenase 2; Extracellular Vesicles; Mesenchymal Stem Cells; Mice; Reperfusion Injury | 2023 |
Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway.
Ischemic stroke is the major cause of disability and death worldwide, but post-stroke neuronal death and related mechanisms remain unclear. Ferroptosis, a newly identified type of regulated cell death, has been shown to be associated with neurological disorders, yet the exact relationship between ferroptosis and ischemic stroke has not been elucidated. The purpose of this study is to investigate the effects of ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) on neuronal injury after cerebral ischemia/reperfusion (I/R) and the underlying mechanism. In this study, we demonstrated that ferroptosis does occur in the stroke model. We found that Fer-1 reduced the levels of iron and malondialdehyde, and increased the content of glutathione and the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in cerebral I/R models. Additionally, Fer-1 significantly reduced the infarct volume and improved neurobehavioral outcomes. Moreover, we found that Fer-1 increased the levels of phosphorylated AKT and GSK3β following cerebral I/R. To further investigate the functional role of the AKT in the neuroprotective effects of Fer-1, MCAO models and oxygen-glucose deprivation-induced HT22 cells were pretreated with the AKT inhibitor MK-2206 before treatment with Fer-1 and the protective effects of Fer-1 were reversed. In conclusion, Fer-1 has protective effects on cerebral I/R injury by activating the AKT/GSK3β pathway, indicating that ferroptosis may become a novel target in the treatment of ischemic stroke. Topics: Brain Ischemia; Glycogen Synthase Kinase 3 beta; Humans; Ischemic Stroke; Proto-Oncogene Proteins c-akt; Reperfusion Injury; Signal Transduction; Stroke | 2023 |
Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury.
Ferroptosis is increasingly becoming to be considered as an important mechanism of pathological cell death during stroke, and specific exogenous ferroptosis inhibitors have the ability to reverse cerebral ischemia/reperfusion injury. However, research on Srs11-92 (AA9), a ferrostatin-1 (Fer-1) analog, in preclinical studies is limited.. In the middle cerebral artery occlusion-reperfusion (MCAO/R) mice model or oxygen-glucose deprivation/reperfusion (OGD/R) cell model, Fer-1, AA9, and/or ML385 were administered, and brain infarct size, neurological deficits, neuronal damage, oxidative stress, and neuroinflammation were determined after the damage, in vitro and in vivo.. Fer-1 and AA9 improved brain infarct size, neuronal damage, and neurological deficits in mice model of MCAO/R, and inhibited the overloaded iron deposition, ROS accumulation, and neuroinflammation response: it also increased the expression of GPx4, Nrf2, and HO-1 and suppressed the expression of HMGB1 and NF-κB p65 in the epicenter of injured hippocampal formation. However, Nrf2 inhibitor ML385 reversed the neuroprotective effect of AA9, including the oxidative stress and neuroinflammation. In vitro studies showed that AA9 relieved OGD/R-induced neuronal oxidative stress and neuroinflammation via the Nrf2 pathway, which was impaired by ML385 in primary neurons.. The findings imply that Fer-1 analog AA9 may be suitable for further translational studies for the protection of neuronal damage via Nrf2 signal pathway-mediated oxidative stress and neuroinflammation in stroke and others neurological diseases. Topics: Animals; Brain Ischemia; Infarction, Middle Cerebral Artery; Mice; Neuroinflammatory Diseases; NF-E2-Related Factor 2; Oxidative Stress; Reperfusion Injury; Stroke | 2023 |
LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53.
The study aims to investigate the roles of LncRNA and miRNA in ferroptosis in brain ischemia/reperfusion (I/R) in vivo and in vitro.. qPCR assay was used to analyze lncRNA PVT1 and miR-214 expressions in acute ischemic stroke (AIS) patients. Then, we established brain I/R mice models and OGD/R PC12 cell models to analyze the mechanism of ferroptosis. I/R mice were treated by lncRNA PVT silencing or miR-214 overexpressing lentivirus via lateral ventricles. Infarct size was analyzed by TTC staining, accompanied by the detection of ferroptosis indicators through Perls'Prussian blue staining, iron kit, MDA kit, glutathione kit, GPx activities kit and Western blotting (WB). Dual luciferase reporter assay was used to assess whether miR-214 bound to PVT1, TP53 or TFR1. Co-IP analyzed the interplay of p53 with SLC7A11.. We found that the levels of PVT1 were upregulated and miR-214 levels were downregulated in plasma of AIS patients. NIHSS score was positively correlated with PVT1 levels but was negatively with miR-214 levels. PVT1 silencing or miR-214 overexpression significantly reduced infarct size and suppressed ferroptosis in vivo. miR-214 overexpression markedly decreased PVT1 levels. Specifically, miR-214 could bind to 3'untranslated region (3'UTR) of PVT1, TP53 or TFR1. PVT1 overexpression or miR-214 silencing markedly abolished the effects of Ferrostatin-1 on ferroptosis indicators except for TFR1 expression. Besides, miR-214 silencing counteracted the effects of PVT1 knockdown on the ferroptosis-related proteins.. PVT1 regulated ferroptosis through miR-214-mediated TFR1 and TP53 expression. There was a positive feedback loop of lncRNA PVT1/miR-214/p53 possibly. Topics: Animals; Antigens, CD; Brain Ischemia; Cyclohexylamines; Disease Models, Animal; Female; Ferroptosis; Gene Silencing; Humans; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Middle Aged; PC12 Cells; Phenylenediamines; Rats; Receptors, Transferrin; Reperfusion Injury; RNA, Long Noncoding; Stroke; Tumor Suppressor Protein p53 | 2020 |