ferrostatin-1 has been researched along with Brain-Injuries* in 5 studies
5 other study(ies) available for ferrostatin-1 and Brain-Injuries
Article | Year |
---|---|
Ferrostatin-1 attenuates brain injury in animal model of subarachnoid hemorrhage via phospholipase A2 activity of PRDX6.
Subarachnoid hemorrhage (SAH) is an acute catastrophic neurological disorder with high morbidity and mortality. Ferroptosis is one of the pathophysiological processes during secondary brain injury of SAH, which could be inhibited by ferrostatin-1 (Fer-1) effectively. Peroxiredoxin6 (PRDX6) is an antioxidant protein and is currently proven to be associated with lipid peroxidation in ferroptosis except in GSH/GPX4 and FSP1/CoQ10 antioxidant systems. However, the alteration and function of PRDX6 in SAH are still unknown. In addition, whether PRDX6 is involved in the neuroprotection of Fer-1 in SAH is yet to be investigated. Endovascular perforation was employed to induce the SAH model. Fer-1 and in vivo siRNA aiming to knockdown PRDX6 were administrated intracerebroventricularly to investigate relevant regulation and mechanism. We confirmed the inhibition of ferroptosis and neuroprotection from brain injury by Fer-1 in SAH. The induction of SAH reduced the expression of PRDX6, which could be alleviated by Fer-1. Accordingly, dysregulated lipid peroxidation indicated by GSH and MDA was improved by Fer-1, which was counteracted by si-PRDX6. Similarly, the neuroprotection of Fer-1 in SAH was diminished by the knockdown of PRDX6 and the administration of a calcium-independent phospholipase A2 (iPLA2) inhibitor. PRDX6 is involved in ferroptosis induced by SAH and is associated with Fer-1 neuroprotection from brain injury via its iPLA2 activity. Topics: Animals; Antioxidants; Brain Injuries; Models, Animal; Phospholipases A2; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage | 2023 |
Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro.
Ferroptosis is driven by iron‑dependent accumulation of lipid hydroperoxides, and hemolytic hyperbilirubinemia causes accumulation of unconjugated bilirubin and iron. The present study aimed to assess the role of ferroptosis in hemolytic hyperbilirubinemia‑induced brain damage (HHIBD). Rats were randomly divided into the control, phenylhydrazine (PHZ) and deferoxamine (DFO) + PHZ groups, with 12 rats in each group. Ferroptosis‑associated biochemical and protein indicators were measured in the brain tissue of rats. We also performed tandem mass tag‑labeled proteomic analysis. The levels of iron and malondialdehyde were significantly higher and levels of glutathione (GSH) and superoxide dismutase activity significantly lower in the brain tissues of the PHZ group compared with those in the control group. HHIBD also resulted in significant increases in the expression of the ferroptosis‑related proteins acyl‑CoA synthetase long‑chain family member 4, ferritin heavy chain 1 and transferrin receptor and divalent metal transporter 1, as well as a significant reduction in the expression of ferroptosis suppressor protein 1. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that the differentially expressed proteins of rat brain tissues between the control and PHZ groups were significantly involved in ferroptosis, GSH metabolism and fatty acid biosynthesis pathways. Pretreatment with DFO induced antioxidant activity and alleviated lipid peroxidation‑mediated HHIBD. In addition, PC12 cells treated with ferric ammonium citrate showed shrinking mitochondria, high mitochondrial membrane density, and increased lipid reactive oxygen species and intracellular ferrous iron, which were antagonized by pretreatment with ferrostatin‑1 or DFO, which was reversed by pretreatment with ferrostatin‑1 or DFO. The present study demonstrated that ferroptosis is involved in HHIBD and provided novel insights into candidate proteins that are potentially involved in ferroptosis in the brain during hemolytic hyperbilirubinemia. Topics: Animals; Apoptosis; Brain; Brain Injuries; Ferroptosis; Glutathione; Hemolysis; Hyperbilirubinemia; Iron; Lipids; Proteomics; Rats | 2023 |
Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats: Role of the SIRT1/Nrf2/GPx4 signaling pathway.
Hypoxic-ischemic brain injury (HIBI) often results in cognitive impairments. Herein, we investigated the roles of ferroptosis in HIBI and the underlying signaling pathways.. Ferrostatin-1 (Fer-1) or resveratrol (Res) treatments were administered intracerebroventricularly 30 min before HIBI in 7-day-old rats. Glutathione peroxidase 4 (GPx4) expression, malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, and the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured after HIBI. Additionally, the weight ratio of left/right hemisphere, brain morphology, Nissl staining, and the Morris water maze test were conducted to estimate brain damage.. At 24-h post-HIBI, GPx4 expression was decreased, and MDA concentration and iron content were increased in the hippocampus. HIBI led to mitochondrial atrophy, brain atrophy/damage, and resultant learning and memory impairments, which were alleviated by Fer-1-mediated inhibition of ferroptosis. Furthermore, Res-mediated SIRT1 upregulation increased Nrf2 and GPx4 expression, thereby attenuating ferroptosis, reducing brain atrophy/damage, and improving learning and memory abilities.. The results demonstrated that during HIBI, ferroptosis occurs via the SIRT1/Nrf2/GPx4 signaling pathway, suggesting it as a potential therapeutic target for inhibiting ferroptosis and ameliorating HIBI-induced cognitive impairments. Topics: Animals; Animals, Newborn; Atrophy; Brain Injuries; Ferroptosis; Hypoxia-Ischemia, Brain; Iron; NF-E2-Related Factor 2; Rats; Signal Transduction; Sirtuin 1 | 2022 |
Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects.
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke because it has few viable therapeutic options to intervene against primary or second brain injury. Recently, evidence has suggested that ferroptosis, a nonapoptotic form of cell death, is involved in ICH. In this study, we examined whether ICH-induced neuron death is partly ferroptotic in humans and assessed its temporal and spatial characteristics in mice. Furthermore, the ferroptosis inhibitor ferrostatin-1 (Fer-1) was used to examine the role of ferroptosis after ICH. Fold changes in ferroptosis-related gene expression, intracellular iron levels, malondialdehyde (MDA) levels, and both protein levels and cellular localization of cyclooxygenase-2 (COX-2) were measured to monitor ferroptosis. Transmission electron microscopy (TEM) was also performed to examine the ultrastructure of cells after ICH. We found that the expression level of prostaglandin-endoperoxide synthase (PTGS2) was increased in both in vitro and in vivo ICH models; by comparison, expression level of RPL8 was increased in human brain tissue. In mice, iron and MDA levels were significantly increased 3 h after ICH; COX-2 levels were increased at 12 h after ICH and peaked at 3 days after ICH; COX-2 colocalized with NeuN (a neuronal biomarker); and TEM showed that shrunken mitochondria were found at 3 h, 3 days, and 7 days after ICH. Moreover, ICH-induced neurological deficits, memory impairment and brain atrophy were reduced by Fer-1 treatment. Our results demonstrated that neuronal ferroptosis occurs during the acute phase of ICH in brain areas distant from the hematoma and that inhibition of ferroptosis by Fer-1 exerted a long-term cerebroprotective effect. Topics: Animals; Apoptosis; Brain; Brain Injuries; Cerebral Hemorrhage; Cyclohexylamines; Cyclooxygenase 2; Ferroptosis; Humans; Iron; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mitochondria; Neurons; Neuroprotective Agents; Phenylenediamines | 2019 |
Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage.
Oxidative stress plays an important role in secondary brain injury (SBI) after intracerebral hemorrhage (ICH), but the underling mechanism has not been fully elucidated. Recently, the antioxidant enzyme glutathione peroxidase 4 (GPX4), has attracted increasing attention due to its ability to degrade reactive oxygen species (ROS) which are the major indicator of oxidative stress; However, the role of GPX4 in ICH has not been reported. This study was designed to investigate the changes in protein levels, as well as potential role and mechanism of GPX4 in SBI following ICH using a Sprague-Dawley (SD) rat model of ICH induced by autologous blood injection into the right basal ganglia. Firstly, GPX4 protein levels in the brain were reduced gradually and bottomed out at 24 h after ICH, compared with the Sham group. Secondly, genetic-overexpression of GPX4 effectively increased level of GPX4 in the brain, and clearly relieved neuronal dysfunction, brain edema, blood brain barrier (BBB) injury, oxidative stress and inflammation after ICH. In contrast, inhibiting GPX4 with a specific pharmacological inhibitor or genetic knockdown exacerbated SBI after ICH. Finally, Ferrostatin-1, a chemical inhibitor of ferroptosis, was used to explore the role of ferroptosis in brain injury after ICH. The results suggest that inhibiting ferroptosis can significantly alleviate SBI after ICH. In summary, our work indicated that GPX4 contributes to SBI following ICH by mediating ferroptosis. Therefore, inhibiting ferroptosis with specific inhibitors or upregulation of GPX4 may be a potential strategy to ameliorate brain injury induced by ICH. Topics: Animals; Antioxidants; Apoptosis; Brain Edema; Brain Injuries; Cell Death; Cerebral Hemorrhage; Cyclohexylamines; Glutathione Peroxidase; Male; Neurons; Oxidative Stress; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species | 2018 |