ferrihydrite and Asbestosis

ferrihydrite has been researched along with Asbestosis* in 2 studies

Other Studies

2 other study(ies) available for ferrihydrite and Asbestosis

ArticleYear
Closing the knowledge gap on the composition of the asbestos bodies.
    Environmental geochemistry and health, 2023, Volume: 45, Issue:7

    Asbestos bodies (AB) form in the lungs as a result of a biomineralization process initiated by the alveolar macrophages in the attempt to remove asbestos. During this process, organic and inorganic material deposit on the foreign fibers forming a Fe-rich coating. The AB start to form in months, thus quickly becoming the actual interface between asbestos and the lung tissue. Therefore, revealing their composition, and, in particular, the chemical form of Fe, which is the major component of the AB, is essential to assess their possible role in the pathogenesis of asbestos-related diseases. In this work we report the result of the first x-ray diffraction measurements performed on single AB embedded in the lung tissue samples of former asbestos plant workers. The combination with x-ray absorption spectroscopy data allowed to unambiguously reveal that Fe is present in the AB in the form of two Fe-oxy(hydroxides): ferrihydrite and goethite. The presence of goethite, which can be explained in terms of the transformation of ferrihydrite (a metastable phase) due to the acidic conditions induced by the alveolar macrophages in their attempt to phagocytose the fibers, has toxicological implications that are discussed in the paper.

    Topics: Asbestos; Asbestosis; Humans; Lung

2023
Peroxidase-like activity of ferruginous bodies isolated by exploiting their magnetic property.
    Journal of toxicology and environmental health. Part A, 2012, Volume: 75, Issue:11

    Ferruginous bodies (FB) are polymorphic structures whose formation is macrophage dependent, and are composed of a core, which may consist of an asbestos fiber coated with proteins, among which ferritin is the main component. Within ferritin, the ferric and ferrous ions are coordinated as ferrihydrite, which is the main iron (Fe) storage compound. However, when ferritin accumulates in some tissues following Fe overload it also contains magnetite along with ferrihydrite, which endows it with magnetic properties. Recently studies showed that magnetite exerts peroxidase-like activity, and since ferruginous bodies display magnetic properties, it was postulated that these particular structures may also contain magnetite within the ferritin coating, and thus may also exert peroxidase-like activity. Histochemical analysis for peroxidase of isolated FB smears demonstrated positive staining. Samples isolated from 4 different autopsy lung fragments were also able to oxidize 3,3',5,5'-tetramethyl-benzidine to a blue colored compound that absorbs at 655 nm. This activity was (1) azide and heat insensitive with optimal pH from 5 to 6, and (2) highly variable, changing more than 25-fold from one sample to another. These findings, together with evidence that the peroxidase-like activity of ferruginous bodies has a hydrogen peroxide and substrate requirement different from that of human myeloperoxidase, can exclude that this enzyme gives a significant contribution to the formation of FB. Standard Fe-rich asbestos fibers also express a peroxidase-like activity, but this appears negligible compared to that of ferruginous bodies. Strong acidification of standard Fe-containing asbestos fibers or magnetically isolated ferruginous bodies liberates a high amount of peroxidase-like activity, which is probably accounted for by the release of Fe ions. Further, FB also damage mesothelial cells in vitro. Data suggest that FB exert peroxidase-like activity and cytotoxic activity against mesothelial cells, and hence may be an important factor in pathogenesis of asbestos-related diseases.

    Topics: Air Pollutants, Occupational; Asbestos; Asbestosis; Benzidines; Catalysis; Cell Line; Chromogenic Compounds; Cytotoxins; Ferric Compounds; Ferritins; Ferrosoferric Oxide; Humans; Hydrogen-Ion Concentration; Lung; Magnetic Phenomena; Mesothelioma; Mineral Fibers; Oxidation-Reduction; Peroxidases; Respiratory Mucosa

2012