ferric-ammonium-citrate has been researched along with Alzheimer-Disease* in 3 studies
3 other study(ies) available for ferric-ammonium-citrate and Alzheimer-Disease
Article | Year |
---|---|
Increasing Intracellular Levels of Iron with Ferric Ammonium Citrate Leads to Reduced P-glycoprotein Expression in Human Immortalised Brain Microvascular Endothelial Cells.
P-glycoprotein (P-gp) at the blood-brain barrier (BBB) precludes the brain penetration of many xenobiotics and mediates brain-to-blood clearance of β-amyloid, which accumulates in the Alzheimer's disease (AD) brain. Zinc and copper are reported to modulate BBB expression and function of P-gp; however, the impact of exogenous iron, which accumulates in AD, on P-gp dynamics remains unknown.. P-gp protein and MDR1 transcript levels were assessed in immortalised human cerebral microvascular endothelial (hCMEC/D3) cells treated with ferric ammonium citrate (FAC; 250 μM, 72 h), by Western blotting and RT-qPCR, respectively. P-gp function was assessed using rhodamine-123 and [. These studies demonstrate that iron negatively regulates P-gp expression at the BBB, potentially impacting CNS drug delivery and brain β-amyloid clearance. Topics: Alzheimer Disease; Amyloid beta-Peptides; ATP Binding Cassette Transporter, Subfamily B; Blood-Brain Barrier; Cell Line; Endothelial Cells; Endothelium, Vascular; Ferric Compounds; Humans; Iron; Microvessels; Neuroprotective Agents; Quaternary Ammonium Compounds; Reactive Oxygen Species | 2021 |
Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein.
The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Ascorbic Acid; Cell Line, Tumor; Ferric Compounds; Flavones; Humans; Hydroxyl Radical; Iron; Iron Chelating Agents; Models, Biological; Neuroblastoma; Neurons; NF-kappa B; Peptide Fragments; Polymerization; Quaternary Ammonium Compounds; Reactive Oxygen Species | 2014 |
Human Abeta1-42 reduces iron-induced toxicity in rat cerebral cortex.
Senile plaques, the major neuropathological lesions of Alzheimer's disease (AD), are composed primarily of amyloid-beta (Abeta) peptide and contain high concentrations of iron (1.0 mM). We have previously shown that intracortical injections of 1.0 mM iron to adult rats produce significantly more neuronal loss than control injections of saline vehicle, whereas injections of Abeta do not. Because iron has been shown to increase the in vitro toxicity of Abeta, the present study was undertaken to determine whether iron can make Abeta neurotoxic in vivo. Abeta and 1.0 mM iron (as ferric ammonium citrate) were coinjected into rat cerebral cortex, and the neuronal loss was compared with that produced by pure Abeta or pure iron. The human and rat variants of Abeta(1-42) were compared to determine whether they produce the same amount of neuronal loss when combined with iron. Coinjection of iron with either Abeta variant caused significantly more neuronal loss than Abeta peptide alone, suggesting that iron may contribute to the toxicity associated with senile plaques. Rat Abeta(1-42) combined with iron was as toxic as iron alone, whereas iron combined with human Abeta(1-42) was significantly less toxic. This latter finding indicates that fibrillar human Abeta is able to reduce iron-induced neurotoxicity in vivo and raises the interesting possibility that senile plaques in AD may represent a neuroprotective response to the presence of elevated metal ions. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cell Death; Cerebral Cortex; Female; Ferric Compounds; Fluoresceins; Fluorescent Dyes; Humans; Organic Chemicals; Peptide Fragments; Plaque, Amyloid; Quaternary Ammonium Compounds; Rats; Rats, Wistar | 2003 |