fenretinide has been researched along with Diseases-in-Twins* in 1 studies
1 review(s) available for fenretinide and Diseases-in-Twins
Article | Year |
---|---|
Cancer risk factors for selecting cohorts for large-scale chemoprevention trials.
Many anticipate that application of findings in molecular genetics will help to achieve greater precision in defining high-risk populations that may benefit from chemopreventive interventions. We must recognize, however, that genetic susceptibility, environmental factors, and complex gene-environment interactions are all likely to be risk determinants for most cancers. Cohort studies of twins and cancer indicate that having "identical" genes is generally not a very accurate predictor of cancer incidence. Data from twin studies support the suggestion that environmental factors such as tobacco use significantly influence cancer risk. The complexities of the genetic contribution to disease risk are exemplified by the development of Duchenne muscular dystrophy in only one of monozygotic twin girls, hypothesized to be the result of X chromosome inactivation, with the distribution patterns of the X chromosome being skewed to the female X in the manifesting twin and to the male X in the normal twin. Evidence from transgenic and genetic-environmental studies in animals support the possibility of genetic-environmental interactions. Calorie restriction modifies tumor expression in p53 knockout mice; a high-fat, low-calcium, low-vitamin D diet increases prepolyp hyperplasia formation in Apc-mutated mice; and calorie restriction early in life influences development of obesity in the genetically obese Zucker rat (fafa). Such environmental modulation of gene expression suggests that chemoprevention has the potential to reduce risk for both environmentally and genetically determined cancers. In view of the growing research efforts in chemoprevention, the NCI has developed a Prevention Trials Decision Network (PTDN) to formalize the evaluation and approval process for large-scale chemoprevention trials. The PTDN addresses large trial prioritization and the associated issues of minority recruitment and retention; identification and validation of biomarkers as intermediate endpoints for cancer; and chemopreventive agent selection and development. A comprehensive database is being established to support the PTDN's decision-making process and will help to determine which agents investigated in preclinical and early phase clinical trials should move to large-scale testing. Cohorts for large-scale chemoprevention trials include individuals who are determined to be at high risk as a result of genetic predisposition, carcinogenic exposure, or the presence of biomarkers indicativ Topics: Animals; Anticarcinogenic Agents; Biomarkers, Tumor; Chemoprevention; Clinical Trials as Topic; Databases, Factual; Diet; Diseases in Twins; Female; Fenretinide; Humans; Male; Mice; National Institutes of Health (U.S.); Neoplasms; Rats; Research Design; Risk Factors; United States | 1996 |