fenobam has been researched along with Fragile-X-Syndrome* in 5 studies
1 trial(s) available for fenobam and Fragile-X-Syndrome
Article | Year |
---|---|
A pilot open label, single dose trial of fenobam in adults with fragile X syndrome.
A pilot open label, single dose trial of fenobam, an mGluR5 antagonist, was conducted to provide an initial evaluation of safety and pharmacokinetics in adult males and females with fragile X syndrome (FXS).. Twelve subjects, recruited from two fragile X clinics, received a single oral dose of 50-150 mg of fenobam. Blood for pharmacokinetic testing, vital signs and side effect screening was obtained at baseline and numerous time points for 6 h after dosing. Outcome measures included prepulse inhibition (PPI) and a continuous performance test (CPT) obtained before and after dosing to explore the effects of fenobam on core phenotypic measures of sensory gating, attention and inhibition.. There were no significant adverse reactions to fenobam administration. Pharmacokinetic analysis showed that fenobam concentrations were dose dependent but variable, with mean (SEM) peak values of 39.7 (18.4) ng/ml at 180 min after the 150 mg dose. PPI met a response criterion of an improvement of at least 20% over baseline in 6 of 12 individuals (4/6 males and 2/6 females). The CPT did not display improvement with treatment due to ceiling effects.. Clinically significant adverse effects were not identified in this study of single dose fenobam across the range of dosages utilised. The positive effects seen in animal models of FXS treated with fenobam or other mGluR5 antagonists, the apparent lack of clinically significant adverse effects, and the potential beneficial clinical effects seen in this pilot trial support further study of the compound in adults with FXS. Topics: Administration, Oral; Adolescent; Adult; Chromatography, Liquid; Female; Fragile X Syndrome; Humans; Imidazoles; Inhibition, Psychological; Male; Mass Spectrometry; Neural Inhibition; Neuropsychological Tests; Pilot Projects; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Young Adult | 2009 |
4 other study(ies) available for fenobam and Fragile-X-Syndrome
Article | Year |
---|---|
Metabotropic glutamate receptor 5 negative allosteric modulators: discovery of 2-chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, RO4917523), a promising novel medicine for psychiatric diseases.
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinson's disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome. Analogue 3 is the first reported mGlu5 NAM with a long half-life in rodents and is therefore an ideal tool compound for chronic studies in mice and rats. Topics: Allosteric Regulation; Animals; Depression; Dose-Response Relationship, Drug; Drug Discovery; Fragile X Syndrome; Humans; Imidazoles; Macaca mulatta; Male; Mice; Mice, Inbred Strains; Molecular Structure; Pyridines; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Structure-Activity Relationship | 2015 |
Fmr1 KO and fenobam treatment differentially impact distinct synapse populations of mouse neocortex.
Cognitive deficits in fragile X syndrome (FXS) are attributed to molecular abnormalities of the brain's vast and heterogeneous synapse populations. Unfortunately, the density of synapses coupled with their molecular heterogeneity presents formidable challenges in understanding the specific contribution of synapse changes in FXS. We demonstrate powerful new methods for the large-scale molecular analysis of individual synapses that allow quantification of numerous specific changes in synapse populations present in the cortex of a mouse model of FXS. Analysis of nearly a million individual synapses reveals distinct, quantitative changes in synaptic proteins distributed across over 6,000 pairwise metrics. Some, but not all, of these synaptic alterations are reversed by treatment with the candidate therapeutic fenobam, an mGluR5 antagonist. These patterns of widespread, but diverse synaptic protein changes in response to global perturbation suggest that FXS and its treatment must be understood as a networked system at the synapse level. Topics: Animals; Fragile X Mental Retardation Protein; Fragile X Syndrome; Imidazoles; Male; Mice; Mice, Knockout; Neocortex; Nerve Tissue Proteins; RNA-Binding Proteins; Synapses | 2014 |
The effect of an mGluR5 inhibitor on procedural memory and avoidance discrimination impairments in Fmr1 KO mice.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Patients with FXS do not only suffer from cognitive problems, but also from abnormalities/deficits in procedural memory formation. It has been proposed that a lack of fragile X mental retardation protein (FMRP) leads to altered long-term plasticity by deregulation of various translational processes at the synapses, and that part of these impairments might be rescued by the inhibition of type I metabotropic glutamate receptors (mGluRs). We recently developed the Erasmus Ladder, which allows us to test, without any invasive approaches, simultaneously, both procedural memory formation and avoidance behavior during unperturbed and perturbed locomotion in mice. Here, we investigated the impact of a potent and selective mGluR5 inhibitor (Fenobam) on the behavior of Fmr1 KO mice during the Erasmus Ladder task. Fmr1 KO mice showed deficits in associative motor learning as well as avoidance behavior, both of which were rescued by intraperitoneal administration of Fenobam. While the Fmr1 KO mice did benefit from the treatment, control littermates suffered from a significant negative side effect in that their motor learning skills, but not their avoidance behavior, were significantly affected. On the basis of these studies in the FXS animal model, it may be worthwhile to investigate the effects of mGluR inhibitors on both the cognitive functions and procedural skills in FXS patients. However, the use of mGluR inhibitors appears to be strongly contraindicated in healthy controls or non-FXS patients with intellectual disability. Topics: Animals; Avoidance Learning; Cognition Disorders; Discrimination Learning; Disease Models, Animal; Excitatory Amino Acid Antagonists; Fragile X Mental Retardation Protein; Fragile X Syndrome; Imidazoles; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate | 2012 |
Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice.
Lack of fragile X mental retardation protein (FMRP) causes Fragile X Syndrome, the most common form of inherited mental retardation. FMRP is an RNA-binding protein and is a component of messenger ribonucleoprotein complexes, associated with brain polyribosomes, including dendritic polysomes. FMRP is therefore thought to be involved in translational control of specific mRNAs at synaptic sites. In mice lacking FMRP, protein synthesis-dependent synaptic plasticity is altered and structural malformations of dendritic protrusions occur. One hypothesized cause of the disease mechanism is based on exaggerated group I mGluR receptor activation. In this study, we examined the effect of the mGluR5 antagonist MPEP on Fragile X related behavior in Fmr1 KO mice. Our results demonstrate a clear defect in prepulse inhibition of startle in Fmr1 KO mice, that could be rescued by MPEP. Moreover, we show for the first time a structural rescue of Fragile X related protrusion morphology with two independent mGluR5 antagonists. Topics: Animals; Behavior, Animal; Cells, Cultured; Excitatory Amino Acid Antagonists; Fragile X Mental Retardation Protein; Fragile X Syndrome; Hippocampus; Imidazoles; Mice; Mice, Knockout; Microscopy, Confocal; Neurons; Phenotype; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Reflex, Startle | 2008 |