favipiravir and Influenza--Human

favipiravir has been researched along with Influenza--Human* in 37 studies

Reviews

12 review(s) available for favipiravir and Influenza--Human

ArticleYear
Influenza-existing drugs and treatment prospects.
    European journal of medicinal chemistry, 2022, Mar-15, Volume: 232

    Influenza is a century-old disease that continues to baffle humans by its frequently changing nature, seasonal epidemics, and occasional pandemics. Approximately 9% of the world's population is infected by the influenza virus annually. The emergence of novel strains because of rapid mutations as well as interspecies disease contamination, limits the efficiency of strain-specific vaccines. Anti-influenza drugs such as neuraminidase inhibitors, M2 ion channel inhibitors, etc. have become the first line of defense in prophylaxis and early containment of the disease. But the growing drug resistance due to drug-induced selective pressure has also limited the efficacy of those drugs. Because we can't predict the next strain types, their virulence, or the severity of the next epidemic/pandemic caused by influenza virus, we ought to gear up for the development of novel anti-influenza drugs with a broad spectrum of reactivity against all strains and subtypes, better bioavailability, easier administrative pathways, and lesser adverse effects. Various new compounds with each having significantly different target molecules and pharmacologic activity have shown potential against influenza virus strains in laboratory situations as well as clinical trials. We should also consider combination therapy to boost the efficacy of existing drugs. This review is aiming to succinctly document the recent signs of progress regarding anti-influenza drugs both in the market and under investigation.

    Topics: Antiviral Agents; Enzyme Inhibitors; Guanidines; Humans; Influenza, Human; Neuraminidase; Orthomyxoviridae

2022
Antiviral therapy for COVID-19: Derivation of optimal strategy based on past antiviral and favipiravir experiences.
    Pharmacology & therapeutics, 2022, Volume: 235

    Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at significantly lower concentrations than the plasma trough levels achieved by the dosage adopted for influenza treatment and exhibits efficacy against coronavirus disease 2019 (COVID-19) pneumonia. Although high doses of favipiravir are required due to the molecule being a purine analog, its conversion into the active form in infected cells with active viral RNA synthesis enhances the antiviral specificity and selectivity as a chain terminator with lethal mutagenesis. Another characteristic feature is the lack of generation of favipiravir-resistant virus. COVID-19 pneumonia is caused by strong cell-mediated immunity against virus-infected cells, and the inflammatory response induced by adaptive immunity continues to peak for 3 to 5 days despite antiviral treatment. This has also been observed in herpes zoster (HZ) and cytomegalovirus (CMV) pneumonia. Inflammation due to an immune response may mask the effectiveness of favipiravir against COVID-19 pneumonia. Favipiravir significantly shortened the recovery time in patients with mild COVID-19 pneumonia by 3 days with the start of treatment by the 5th day of symptom onset. Since both CMV and COVID-19 pneumonia are caused by adaptive immunity and prevention of cytomegalovirus pneumonia is the standard treatment due to difficulties in treating refractory CMV pneumonia, COVID-19 pneumonia should be prevented with early treatment as well. In the present study, we have comprehensively reviewed the optimal antiviral therapy for COVID-19 based on clinical trials of favipiravir for the treatment of COVID-19 pneumonia and the concurrently established therapies for other viral infections, particularly HZ and CMV pneumonia. Optimally, antivirals should be administered immediately after COVID-19 diagnosis, similar to that after influenza diagnosis, to prevent COVID-19 pneumonia and complications resulting from microangiopathy.

    Topics: Amides; Antiviral Agents; COVID-19 Drug Treatment; COVID-19 Testing; Cytomegalovirus Infections; Humans; Influenza, Human; Pyrazines; SARS-CoV-2

2022
Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance.
    Cold Spring Harbor perspectives in medicine, 2021, 05-03, Volume: 11, Issue:5

    The influenza virus RNA-dependent RNA polymerase is highly conserved among influenza A, B, C, and D viruses. It comprises three subunits: polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA) in influenza A and B viruses or polymerase 3 protein (P3) in influenza C and D viruses. Because this polymerase is essential for influenza virus replication, it has been considered as a target for antiviral agents. Recently, several polymerase inhibitors that target each subunit have been developed. This review discusses the mechanism of action, antiviral activity, and emergence of resistance to three inhibitors approved for the treatment of influenza or in late-phase clinical trials: the PB1 inhibitor favipiravir, the PB2 inhibitor pimodivir, and the PA inhibitor baloxavir marboxil.

    Topics: Amides; Antiviral Agents; Dibenzothiepins; Drug Resistance, Viral; Humans; Influenza, Human; Morpholines; Orthomyxoviridae; Pyrazines; Pyridines; Pyridones; Pyrimidines; Pyrroles; RNA-Dependent RNA Polymerase; Triazines; Virus Replication

2021
Influenza management with new therapies.
    Current opinion in pulmonary medicine, 2020, Volume: 26, Issue:3

    Influenza represents a significant treatment burden to critical care services. A variety of treatment strategies exist, with more and more therapeutic avenues opening up as research progresses. We examined both pharmacological and supportive treatment strategies currently available to see how they might be applied in an ICU setting.. Supportive care in Influenza centres around optimizing respiratory failure, particularly through well established and recognized ventilatory strategies. Noninvasive ventilation and high-flow nasal oxygen may have a limited role in selected patients under carefully monitored circumstances. Drug therapy exerts only a modest clinical effect and has been poorly studied in the critically ill, though there is some evidence to support the use of neuraminidase inhibitors (NAI) - particularly oseltamivir - as early as possible in this cohort. Newer agents have failed to demonstrate superiority over NAIs but may be useful options if the patient fails to respond or should resistant influenza strains emerge. Steroid therapy, in the absence of another indication, must be recommended against given the repeated trend towards increased mortality in this group.. Influenza management is an evolving field of significant interest to any critical care provider. Currently, good respiratory supportive care and early enteral oseltamivir are the best supported treatment strategies. Further study in the intensive care setting will be needed before the use of novel agents can be recommended.

    Topics: Adrenal Cortex Hormones; Amides; Antiviral Agents; Critical Care; Critical Illness; Dibenzothiepins; Enzyme Inhibitors; Humans; Influenza, Human; Morpholines; Neuraminidase; Oseltamivir; Pyrazines; Pyridines; Pyridones; Pyrimidines; Pyrroles; Respiration, Artificial; Triazines; Zanamivir

2020
Next-generation direct-acting influenza therapeutics.
    Translational research : the journal of laboratory and clinical medicine, 2020, Volume: 220

    Influenza viruses are a major threat to human health globally. In addition to further improving vaccine prophylaxis, disease management through antiviral therapeutics constitutes an important component of the current intervention strategy to prevent advance to complicated disease and reduce case-fatality rates. Standard-of-care is treatment with neuraminidase inhibitors that prevent viral dissemination. In 2018, the first mechanistically new influenza drug class for the treatment of uncomplicated seasonal influenza in 2 decades was approved for human use. Targeting the PA endonuclease subunit of the viral polymerase complex, this class suppresses viral replication. However, the genetic barrier against viral resistance to both drug classes is low, pre-existing resistance is observed in circulating strains, and resistant viruses are pathogenic and transmit efficiently. Addressing the resistance problem has emerged as an important objective for the development of next-generation influenza virus therapeutics. This review will discuss the status of influenza therapeutics including the endonuclease inhibitor baloxavir marboxil after its first year of clinical use and evaluate a subset of direct-acting antiviral candidates in different stages of preclinical and clinical development.

    Topics: Amides; Antibodies, Neutralizing; Antiviral Agents; Cytidine; Dibenzothiepins; Drug Resistance, Viral; Humans; Hydroxylamines; Influenza, Human; Morpholines; Neuraminidase; Oxazines; Pyrazines; Pyridines; Pyridones; Ribonucleosides; RNA-Dependent RNA Polymerase; Thiepins; Triazines; Virus Replication

2020
Favipiravir, an anti-influenza drug against life-threatening RNA virus infections.
    Pharmacology & therapeutics, 2020, Volume: 209

    Favipiravir has been developed as an anti-influenza drug and licensed as an anti-influenza drug in Japan. Additionally, favipiravir is being stockpiled for 2 million people as a countermeasure for novel influenza strains. This drug functions as a chain terminator at the site of incorporation of the viral RNA and reduces the viral load. Favipiravir cures all mice in a lethal influenza infection model, while oseltamivir fails to cure the animals. Thus, favipiravir contributes to curing animals with lethal infection. In addition to influenza, favipiravir has a broad spectrum of anti-RNA virus activities in vitro and efficacies in animal models with lethal RNA viruses and has been used for treatment of human infection with life-threatening Ebola virus, Lassa virus, rabies, and severe fever with thrombocytopenia syndrome. The best feature of favipiravir as an antiviral agent is the apparent lack of generation of favipiravir-resistant viruses. Favipiravir alone maintains its therapeutic efficacy from the first to the last patient in an influenza pandemic or an epidemic lethal RNA virus infection. Favipiravir is expected to be an important therapeutic agent for severe influenza, the next pandemic influenza strain, and other severe RNA virus infections for which standard treatments are not available.

    Topics: Amides; Animals; Antiviral Agents; Humans; Influenza, Human; Pyrazines; RNA Virus Infections

2020
Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis.
    CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 2020, 07-06, Volume: 192, Issue:27

    Antiviral medications are being given empirically to some patients with coronavirus disease 2019 (COVID-19). To support the development of a COVID-19 management guideline, we conducted a systematic review that addressed the benefits and harms of 7 antiviral treatments for COVID-19.. We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), PubMed and 3 Chinese databases (CNKI, WANFANG and SinoMed) through Apr. 19, medRxiv and Chinaxiv through Apr. 27, and Chongqing VIP through Apr. 30, 2020. We included studies of ribavirin, chloroquine, hydroxychloroquine, umifenovir (arbidol), favipravir, interferon and lopinavir/ritonavir. If direct evidence from COVID-19 studies was not available, we included indirect evidence from studies of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) for efficacy outcomes and other acute respiratory viral infections for safety outcomes.. In patients with nonsevere COVID-19 illness, the death rate was extremely low, precluding an important effect on mortality. We found only very low-quality evidence with little or no suggestion of benefit for most treatments and outcomes in both nonsevere and severe COVID-19. An exception was treatment with lopinavir/ritonavir, for which we found low-quality evidence for a decrease in length of stay in the intensive care unit (risk difference 5 d shorter, 95% confidence interval [CI] 0 to 9 d) and hospital stay (risk difference 1 d shorter, 95% CI 0 to 2 d). For safety outcomes, evidence was of low or very low quality, with the exception of treatment with lopinavir/ritonavir for which moderate-quality evidence suggested likely increases in diarrhea, nausea and vomiting.. To date, persuasive evidence of important benefit in COVID-19 does not exist for any antiviral treatments, although for each treatment evidence has not excluded important benefit. Additional randomized controlled trials involving patients with COVID-19 will be needed before such treatments can be administered with confidence.

    Topics: Amides; Antiviral Agents; Betacoronavirus; Chloroquine; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Evidence-Based Medicine; Humans; Hydroxychloroquine; Indoles; Influenza, Human; Lopinavir; Observational Studies as Topic; Pandemics; Pneumonia, Viral; Pyrazines; Ribavirin; Ritonavir; SARS-CoV-2

2020
[Favipiravir, a new concept of antiviral drug against influenza viruses].
    Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 2017, Volume: 30, Issue:2

    Favipiravir (T-705) is a new antiviral drug with strong inhibitory activity on RNA-dependent RNA polymerase of most RNA virus genome. All the influenza viruses have been shown fully sensitive to this new antiviral, including genetic strains to neuraminidase inhibitors (oseltamivir) resistance. Its mechanism of action lies in blocking viral replication and induction of lethal mutagenesis which determines the loss of infective activity of influenza viruses. Its activity is particularly intense in the respiratory tract, decreasing the viral load to non-infectious levels. Clinical trials in humans have not yet completed but have very favourable results. It seems that the best therapy would be the combination of favipiravir with oseltamivir; both antivirals are synergistic and avoid the emergence of resistance.

    Topics: Amides; Animals; Antiviral Agents; Humans; Influenza, Human; Orthomyxoviridae; Pyrazines

2017
Current and novel antiviral strategies for influenza infection.
    Current opinion in virology, 2016, Volume: 18

    Influenza A and B viruses are major causes for respiratory infections in children and adults. Viral and host factors determine clinical manifestations which range from self-resolving uncomplicated infections, severe viral or bacterial secondary pneumonia, to death. Emergence of transmissible resistant variants and time-dependent effectiveness are the major challenges for the currently approved antivirals, M2 ion channel blockers and neuraminidase (NA) inhibitors. Favipiravir that inhibits the RNA-dependent RNA polymerase of multiple RNA viruses is approved in Japan against influenza strains resistant to available antivirals. With expanded knowledge on viral nucleoprotein (NP) and polymerase structures, novel small molecule inhibitors targeting NP oligomer formation, PA endonuclease domain, and the PB2 cap-binding domain are being developed. Combination therapy with different antiviral compounds or with host immune response modulators may further benefit clinical outcomes.

    Topics: Amides; Antiviral Agents; Drug Resistance, Viral; Drug Therapy, Combination; Enzyme Inhibitors; Humans; Influenza A virus; Influenza B virus; Influenza, Human; Neuraminidase; Nucleoproteins; Pyrazines; Respiratory Tract Infections; Virus Replication

2016
Antiviral therapy in seasonal influenza and 2009 H1N1 pandemic influenza: Korean experiences and perspectives.
    Expert review of anti-infective therapy, 2015, Volume: 13, Issue:11

    Influenza is a major cause of substantial morbidity and mortality in humans every year. Vaccination is the main strategy to prevent influenza infection, but antiviral agents also play an important role in the control of both seasonal and pandemic influenza. During the influenza A/H1N1 pandemic in 2009, early prompt antiviral therapy may have reduced the severity of the influenza outcomes including pneumonia, hospitalization and mortality in the Republic of Korea. Since the 2009 H1N1 pandemic, there have been increasing usages of antiviral agents for the treatment of patients with seasonal influenza. Although currently rare, antiviral resistance among influenza viruses may emerge and increase with increased use of neuraminidase inhibitors. New agents with different modes of action are under investigation, including favipiravir, DAS181, nitazoxanide and broad-spectrum neutralizing monoclonal antibodies. Data are limited with respect to high-dose and combination antiviral therapies. So, clinical trials are warranted to evaluate diverse antiviral combinations that may be synergistic and less likely to induce breakthrough resistance.

    Topics: Acids, Carbocyclic; Amides; Antiviral Agents; Clinical Trials as Topic; Cyclopentanes; Drug Resistance, Viral; Guanidines; Hospitalization; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Oseltamivir; Pyrans; Pyrazines; Republic of Korea; Sialic Acids; Zanamivir

2015
Favipiravir (T-705), a novel viral RNA polymerase inhibitor.
    Antiviral research, 2013, Volume: 100, Issue:2

    Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of influenza virus. It is phosphoribosylated by cellular enzymes to its active form, favipiravir-ribofuranosyl-5'-triphosphate (RTP). Its antiviral effect is attenuated by the addition of purine nucleic acids, indicating the viral RNA polymerase mistakenly recognizes favipiravir-RTP as a purine nucleotide. Favipiravir is active against a broad range of influenza viruses, including A(H1N1)pdm09, A(H5N1) and the recently emerged A(H7N9) avian virus. It also inhibits influenza strains resistant to current antiviral drugs, and shows a synergistic effect in combination with oseltamivir, thereby expanding influenza treatment options. A Phase III clinical evaluation of favipiravir for influenza therapy has been completed in Japan and two Phase II studies have been completed in the United States. In addition to its anti-influenza activity, favipiravir blocks the replication of many other RNA viruses, including arenaviruses (Junin, Machupo and Pichinde); phleboviruses (Rift Valley fever, sandfly fever and Punta Toro); hantaviruses (Maporal, Dobrava, and Prospect Hill); flaviviruses (yellow fever and West Nile); enteroviruses (polio- and rhinoviruses); an alphavirus, Western equine encephalitis virus; a paramyxovirus, respiratory syncytial virus; and noroviruses. With its unique mechanism of action and broad range of antiviral activity, favipiravir is a promising drug candidate for influenza and many other RNA viral diseases for which there are no approved therapies.

    Topics: Amides; Antiviral Agents; Clinical Trials, Phase II as Topic; Clinical Trials, Phase III as Topic; DNA-Directed RNA Polymerases; Enzyme Inhibitors; Humans; Influenza, Human; Japan; Pyrazines; RNA Viruses; United States

2013
Developing new antiviral agents for influenza treatment: what does the future hold?
    Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2009, Jan-01, Volume: 48 Suppl 1

    Antiviral agents for the treatment of influenza are urgently needed to circumvent the limitations of current drugs in several critical areas: high frequencies of resistance to M2 inhibitors among currently circulating strains and variable frequencies of resistance to oseltamivir among A(H1N1) strains, limited efficacy of treatment and treatment-emergent antiviral resistance in cases of avian influenza A(H5N1) illness in humans, and lack of parenteral agents for seriously ill patients. Two neuraminidase inhibitors (NAIs), zanamivir and peramivir, have undergone or are undergoing clinical trials for use by intravenous or intramuscular administration, and one long-acting NAI, designated CS-8958, is under study for use by inhalation. Advances in understanding the mechanisms involved in influenza virus replication have revealed a number of potential targets that might be exploited in the development of new agents. Among these agents are T-705, a polymerase inhibitor, and DAS181, an attachment inhibitor. Combination therapy with currently available agents is supported by data from animal models but has received limited clinical study to date.

    Topics: Acids, Carbocyclic; Amides; Animals; Antiviral Agents; Cyclopentanes; Drug Discovery; Drug Resistance, Viral; Drug Therapy, Combination; Guanidines; Humans; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H5N1 Subtype; Influenza, Human; Neuraminidase; Pyrazines; Recombinant Fusion Proteins; Zanamivir

2009

Trials

1 trial(s) available for favipiravir and Influenza--Human

ArticleYear
Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials.
    The Journal of infectious diseases, 2022, 11-11, Volume: 226, Issue:10

    We conducted double-blind, placebo-controlled trials assessing the efficacy and tolerability of favipiravir in acute influenza.. Otherwise healthy adults with influenza-like symptoms and fever of ≤48 hours were randomized to favipiravir (1800 mg twice daily [BID] on day 1, 800 mg BID on days 2-5) or placebo tablets (1:1 in US316; 3:1 in US317). The primary efficacy endpoint was the time to illness alleviation when 6 influenza symptoms were self-rated as absent or mild and fever was absent in the intention-to-treat, influenza-infected participants.. In US316 (301 favipiravir, 322 placebo), favipiravir was associated with a 14.4-hour reduction (median, 84.2 vs 98.6 hours; P = .004) in time to illness alleviation vs placebo. In US317 (526 favipiravir, 169 placebo), favipiravir did not significantly reduce time to alleviation (median, 77.8 vs 83.9 hours). In both trials favipiravir was associated with reduced viral titers, RNA load area under the curve over days 1-5, and median times to cessation of virus detection (P < .001). Aside from asymptomatic hyperuricemia, no important differences in adverse events were found.. This favipiravir dosing regimen demonstrated significant antiviral efficacy but inconsistent illness alleviation in uncomplicated influenza. Studies of higher doses and antiviral combinations for treating serious influenza and other RNA viral infections are warranted. Clinical Trials Registration. NCT02026349; NCT02008344.

    Topics: Adult; Antiviral Agents; Double-Blind Method; Fever; Humans; Influenza, Human; Pyrazines; RNA; Treatment Outcome

2022

Other Studies

24 other study(ies) available for favipiravir and Influenza--Human

ArticleYear
Antiviral Susceptibilities of Distinct Lineages of Influenza C and D Viruses.
    Viruses, 2023, 01-15, Volume: 15, Issue:1

    The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.

    Topics: Antiviral Agents; Brazil; Drug Resistance, Viral; Humans; Influenza, Human; Orthomyxoviridae

2023
Efficacy of favipiravir against influenza virus resistant to both baloxavir and neuraminidase inhibitors.
    The Journal of antimicrobial chemotherapy, 2023, 07-05, Volume: 78, Issue:7

    Widespread resistance of influenza viruses to neuraminidase (NA) inhibitor or polymerase inhibitor, baloxavir, is a major public health concern. The amino acid mutations R152K in NA and I38T in polymerase acidic (PA) are responsible for resistance to NA inhibitors and baloxavir, respectively.. We generated recombinant A(H1N1)pdm09 viruses possessing NA-R152K, PA-I38T or both mutations by using a plasmid-based reverse genetics system, characterized their virological properties in vitro and in vivo, and examined whether oseltamivir, baloxavir and favipiravir are effective against these mutant viruses.. The three mutant viruses showed similar or superior growth kinetics and virulence to those of wild-type virus. Although oseltamivir and baloxavir blocked the replication of the wild-type virus in vitro, oseltamivir and baloxavir failed to suppress the replication of the NA-R152K and PA-I38T viruses in vitro, respectively. Mutant virus possessing both mutations grew in the presence of oseltamivir or baloxavir in vitro. Baloxavir treatment protected mice from lethal infection with wild-type or NA-R152K virus, but failed to protect mice from lethal infection with PA-I38T or PA-I38T/NA-R152K virus. Favipiravir treatment protected mice from lethal infection with all viruses tested, whereas oseltamivir treatment did not protect at all.. Our findings indicate that favipiravir should be used to treat patients with suspected baloxavir-resistant virus infection.

    Topics: Animals; Antiviral Agents; Drug Resistance, Viral; Enzyme Inhibitors; Guanidines; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Mice; Neuraminidase; Oseltamivir; Pyridones; Triazines

2023
The combined effect of oseltamivir and favipiravir on influenza A virus evolution in patients hospitalized with severe influenza.
    Antiviral research, 2023, Volume: 216

    Our previous study shows favipiravir and oseltamivir combination therapy may accelerate clinical recovery compared to oseltamivir monotherapy in severe influenza, but its effect on virological evolution and resistance mutation against oseltamivir is still unknown. In this study, we collected longitudinal respiratory samples from influenza patients who underwent combination therapy and applied them to next generation sequencing of the whole genome of the influenza A virus (IAV). We also included a cohort untreated with any antivirals to serve as the control. In total, 62 samples from 19 patients treated with combination therapy and 20 samples from 20 patients untreated were successfully sequenced. The nucleotide diversity in the whole genome of IAV in the combination group showed no difference compared to that in the control group (P > 0.05). Moreover, we observed 174 kinds of nonsynonymous nucleotide substitutions in patients with combination therapy, mostly in NA (n = 44) and HA (n = 43). Of them, the G→A transition was the dominant variant type (27%) and 46/174 (26%) was reported to have biological effects, such as increased pathogenicity and polymerase activity. Among the 29 mutations conferring reduction in oseltamivir sensitivity we investigated, H275Y was the only mutation detected in the 4 samples from 1 of 19 patients and demonstrated increasing frequency during the treatment. Mutations conferring favipiravir resistance were not observed. Our studies showed combination therapy of favipiravir and oseltamivir has little effect on virus nucleotide diversity, nor prevents the increase of oseltamivir-resistant variants.

    Topics: Antiviral Agents; Drug Resistance, Viral; Humans; Influenza A virus; Influenza A Virus, H1N1 Subtype; Influenza, Human; Neuraminidase; Oseltamivir

2023
Discovery of Aryl Benzoyl Hydrazide Derivatives as Novel Potent Broad-Spectrum Inhibitors of Influenza A Virus RNA-Dependent RNA Polymerase (RdRp).
    Journal of medicinal chemistry, 2022, 03-10, Volume: 65, Issue:5

    Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs

    Topics: Animals; Antiviral Agents; Humans; Hydrazines; Influenza A virus; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H5N1 Subtype; Influenza, Human; Mice; RNA-Dependent RNA Polymerase; Virus Replication

2022
Analysis of the responsible site for favipiravir resistance in RNA-dependent RNA polymerase of influenza virus A/PR/8/34 (H1N1) using site-directed mutagenesis.
    Antiviral research, 2022, Volume: 205

    Favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits the replication of influenza virus in vitro and in vivo. Favipiravir is converted to favipiravir-4-ribofuranosyl-5-triphosphate (favipiravir RTP) by intracellular enzymes and functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRP) of influenza virus. Our previous experiments failed in an attempt to obtain a favipiravir-resistant influenza virus in vitro using influenza virus A/PR/8/34(H1N1). Conversely, Goldhill et al. reported a favipiravir-resistant influenza virus generated by in vitro passage of influenza virus A/England/195/2009 (H1N1), an early isolate from the 2009 H1N1 pandemic (pdm09), in the presence of favipiravir with K229R mutation in PB1. This study focused on K229R mutation near the NTP cross-linked region in PB1 based on the above conflicting findings to confirm whether K229R mutation brings favipiravir resistance to influenza virus A/PR/8/34. Thirty PB1 mutants generated by site-directed mutagenesis of the NTP cross-linked region were evaluated using an influenza virus A/PR/8/34 replicon system. Among the 30 mutants, 10 possessed but 20 lost replicon activity. When susceptibility to favipiravir in 10 mutants was further assessed, the PB1 E491D mutant was five times more sensitive than the wild-type (WT), while only the PB1 K229R mutant was resistant to favipiravir. Results suggested that the evaluated region was essential for polymerase activity, and K229 mutation was responsible for polymerase inhibition of favipiravir in the influenza virus A/PR/8/34. Interestingly, the tested K229X series mutants entirely lost replicon activity, except for K229R. This suggested that the amino acid at position 229 in PB1 of influenza virus may play a pivotal role in polymerase activity. Moreover, this lysine residue is highly conserved among positive- and negative-sense single-stranded RNA viruses, in which favipiravir showed potent activity, suggesting that this mutation may determine the characterization of the in vitro broad-spectrum activity of favipiravir. Additionally, this mutation acquisition greatly influences the viral replication and the susceptibility to favipiravir.

    Topics: Amides; Antiviral Agents; Drug Resistance, Viral; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Mutagenesis, Site-Directed; Pyrazines; RNA-Dependent RNA Polymerase; Virus Replication; Viruses

2022
Early antiviral and supervisory dexamethasone treatment improve clinical outcomes of nonsevere COVID-19 patients.
    Medicine, 2022, Nov-11, Volume: 101, Issue:45

    This study aimed to evaluate the efficacy of early antiviral treatment in preventing clinical deterioration in asymptomatic or mildly symptomatic severe acute respiratory syndrome coronavirus 2 infected (COVID-19) patients in home isolation and to share our experiences with the ambulatory management of nonsevere COVID-19 patients. This retrospective study included mild COVID-19 adult patients confirmed by real-time reverse transcription-polymerase chain reaction. They received care via an ambulatory management strategy between July 2021 and November 2021. Demographic data, clinical progression, and outcomes were collected. Both descriptive and inferential statistics were performed to illustrate the cohort's characteristic and outcomes of the study. Univariable and multivariable logistic regression models were employed to investigate the associations between clinical factors and disease progression. A total of 1940 patients in the Siriraj home isolation system met the inclusion criteria. Their mean age was 42.1 ± 14.9 years, with 14.2% older than 60 years, 54.3% female, and 7.1% with a body weight ≥ 90 kg. Only 115 patients (5.9%) had deterioration of clinical symptoms. Two-thirds of these could be managed at home by dexamethasone treatment under physician supervision; however, 38 of the 115 patients (2.0% of the study cohort) needed hospitalization. Early favipiravir outpatient treatment (≤ 5 days from onset of symptoms) in nonsevere COVID-19 patients was significantly associated with a lower rate of symptom deterioration than late favipiravir treatment (50 [4.6%] vs 65 [7.5%] patients, respectively; P = .008; odds ratio 1.669; 95% confidence interval, 1.141-2.441). The unfavorable prognostic factors for symptom deterioration were advanced age, body weight ≥ 90 kg, unvaccinated status, higher reverse transcription-polymerase chain reaction cycle threshold, and late favipiravir treatment. The early delivery of essential treatment, including antiviral and supervisory dexamethasone, to ambulatory nonsevere COVID-19 patients yielded favorable outcomes during the COVID-19 pandemic in Thailand.

    Topics: Adult; Antiviral Agents; Body Weight; COVID-19 Drug Treatment; Dexamethasone; Female; Humans; Influenza, Human; Male; Middle Aged; Pandemics; Retrospective Studies

2022
Understanding the pharmacokinetics of Favipiravir: Implications for treatment of influenza and COVID-19.
    EBioMedicine, 2021, Volume: 63

    Topics: Amides; Antiviral Agents; COVID-19 Drug Treatment; Humans; Influenza, Human; Orthomyxoviridae; Pyrazines; SARS-CoV-2

2021
Favipiravir-resistant influenza A virus shows potential for transmission.
    PLoS pathogens, 2021, Volume: 17, Issue:6

    Favipiravir is a nucleoside analogue which has been licensed to treat influenza in the event of a new pandemic. We previously described a favipiravir resistant influenza A virus generated by in vitro passage in presence of drug with two mutations: K229R in PB1, which conferred resistance at a cost to polymerase activity, and P653L in PA, which compensated for the cost of polymerase activity. However, the clinical relevance of these mutations is unclear as the mutations have not been found in natural isolates and it is unknown whether viruses harbouring these mutations would replicate or transmit in vivo. Here, we infected ferrets with a mix of wild type p(H1N1) 2009 and corresponding favipiravir-resistant virus and tested for replication and transmission in the absence of drug. Favipiravir-resistant virus successfully infected ferrets and was transmitted by both contact transmission and respiratory droplet routes. However, sequencing revealed the mutation that conferred resistance, K229R, decreased in frequency over time within ferrets. Modelling revealed that due to a fitness advantage for the PA P653L mutant, reassortment with the wild-type virus to gain wild-type PB1 segment in vivo resulted in the loss of the PB1 resistance mutation K229R. We demonstrated that this fitness advantage of PA P653L in the background of our starting virus A/England/195/2009 was due to a maladapted PA in first wave isolates from the 2009 pandemic. We show there is no fitness advantage of P653L in more recent pH1N1 influenza A viruses. Therefore, whilst favipiravir-resistant virus can transmit in vivo, the likelihood that the resistance mutation is retained in the absence of drug pressure may vary depending on the genetic background of the starting viral strain.

    Topics: Amides; Animals; Antiviral Agents; Drug Resistance, Viral; Ferrets; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Orthomyxoviridae Infections; Pyrazines

2021
The mechanism of action of T-705 as a unique delayed chain terminator on influenza viral polymerase transcription.
    Biophysical chemistry, 2021, Volume: 277

    Favipiravir (T-705) has been developed as a potent anti-influenza drug and exhibited a strong inhibition effect against a broad spectrum of RNA viruses. Its active form, ribofuranosyl-triphosphate (T-705-RTP), functions as a competitive substrate for the RNA-dependent RNA polymerase (RdRp) of the influenza A virus (IAV). However, the exact inhibitory mechanisms of T-705 remain elusive and subject to a long-standing debate. Although T-705 has been proposed to inhibit transcription by acting as a chain terminator, it is also paradoxically suggested to be a mutagen towards IAV RdRp by inducing mutations due to its ambiguous base pairing of C and U. Here, we combined biochemical assay with molecular dynamics (MD) simulations to elucidate the molecular mechanism underlying the inhibitory functions exerted by T-705 in IAV RdRp. Our in vitro transcription assay illustrated that IAV RdRp could recognize T-705 as a purine analogue and incorporate it into the nascent RNA strand. Incorporating a single T-705 is incapable of inhibiting transcription as extra natural nucleotides can be progressively added. However, when two consecutive T-705 are incorporated, viral transcription is completely terminated. MD simulations reveal that the sequential appearance of two T-705 in the nascent strand destabilizes the active site and disrupts the base stacking of the nascent RNA. Altogether, our results provide a plausible explanation for the inhibitory roles of T-705 targeting IAV RdRp by integrating the computational and experimental methods. Our study also offers a comprehensive platform to investigate the inhibition effect of antivirals and a novel explanation for the designing of anti-flu drugs.

    Topics: Amides; Humans; Influenza, Human; Pyrazines; Viral Transcription

2021
Pretreatment serum uric acid level is not a surrogate marker for the outcome of favipiravir treatment in COVID-19 patients.
    Turkish journal of medical sciences, 2021, Volume: 51, Issue:5

    To the editor, Favipiravir (FVP) was developed against the influenza virus infection and licensed for the treatment of influenza in Japan [1]. In addition to influenza viruses, FVP demonstrates a broad-spectrum activity against many RNA viruses including Ebola, Lassa, rabies, and severe fever with thrombocytopenia [2]. FVP exhibited a comparable in vitro efficacy against SARS-CoV-2 with remdesivir in a cell culture model [3].. The authors would like to acknowledge the contributions of numerous physicians, nurses, and healthcare personnel of Hacettepe University's COVID-19 response team for their selfless efforts in follow-up and care of the patients. Authors declare that there is no conflict of interest.

    Topics: Biomarkers; COVID-19 Drug Treatment; Humans; Hypoxanthine Phosphoribosyltransferase; Influenza, Human; SARS-CoV-2; Uric Acid

2021
Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection.
    The Journal of infectious diseases, 2020, 04-27, Volume: 221, Issue:10

    A synergistic effect of combination therapy with favipiravir and oseltamivir has been reported in preclinical models of influenza. However, no data are available on the clinical effectiveness of combination therapy in severe influenza.. Data from 2 separate prospective studies of influenza adults were used to compare outcomes between combination and oseltamivir monotherapy. Outcomes included rate of clinical improvement (defined as a decrease of 2 categories on a 7-category ordinal scale) and viral RNA detectability over time. Subhazard ratios (sHRs) were estimated by the Fine and Gray model for competing risks.. In total, 40 patients were treated with combination therapy and 128 with oseltamivir alone. Clinical improvement on day 14 in the combination group was higher than in the monotherapy group (62.5% vs 42.2%; P = .0247). The adjusted sHR for combination therapy was 2.06 (95% confidence interval, 1.30-3.26). The proportion of undetectable viral RNA at day 10 was higher in the combination group than the oseltamivir group (67.5% vs 21.9%; P < .01). No significant differences were observed in mortality or other outcomes.. Favipiravir and oseltamivir combination therapy may accelerate clinical recovery compared to oseltamivir monotherapy in severe influenza, and this strategy should be formally evaluated in a randomized controlled trial.

    Topics: Aged; Amides; Antiviral Agents; Critical Illness; Drug Therapy, Combination; Female; Humans; Influenza, Human; Male; Middle Aged; Oseltamivir; Pyrazines; Retrospective Studies

2020
Favipiravir and Zanamivir Cleared Infection with Influenza B in a Severely Immunocompromised Child.
    Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2020, 10-23, Volume: 71, Issue:7

    A combination of favipiravir and zanamivir successfully cleared influenza B infection in a child who had undergone bone marrow transplant for X-linked severe combined immunodeficiency, with no recovery of T lymphocytes. Deep sequencing of viral samples illuminated the within-host dynamics of infection, demonstrating the effectiveness of favipiravir in this case.

    Topics: Amides; Antiviral Agents; Child; Humans; Influenza, Human; Pyrazines; Zanamivir

2020
Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice.
    Virology, 2020, Volume: 545

    The emergence of resistant mutants to the wildly used neuraminidase inhibitors (NAIs) makes the development of novel drugs necessary. Favipiravir (T-705) is one of the RNA-dependent RNA polymerase (RdRp) inhibitors developed in recent years. To examine the efficacy of T-705 against influenza B virus infections in vivo, C57BL/6 mice infected with wild-type or oseltamivir-resistant influenza B/Memphis/20/96 viruses were treated with T-705. Starting 2 h post inoculation (hpi), T-705 was orally administered to mice BID at dosages of 50, 150, or 300 mg/kg/day for 5 days. Oseltamivir was used as control. Here, we showed that T-705 protected mice from lethal infection in a dose-dependent manner. T-705 administration also significantly reduced viral loads and suppressed pulmonary pathology. In addition, phenotypic assays demonstrated that no T-705-resistant viruses emerged after T-705 treatment. In conclusion, T-705 can be effective to protect mice from lethal infection with both wild-type and oseltamivir-resistant influenza B viruses.

    Topics: Amides; Animals; Antiviral Agents; Drug Resistance, Viral; Female; Humans; Influenza B virus; Influenza, Human; Mice; Mice, Inbred C57BL; Oseltamivir; Pyrazines

2020
Coinfection with SARS-CoV-2 and influenza A virus.
    BMJ case reports, 2020, Jul-01, Volume: 13, Issue:7

    Since December 2019, coronavirus disease 2019 (COVID-19) has been an international public health emergency. The possibility of COVID-19 should be considered primarily in patients with new-onset fever or respiratory tract symptoms. However, these symptoms can occur with other viral respiratory illnesses. We reported a case of severe acute respiratory syndrome coronavirus 2 and influenza A virus coinfection. During the epidemic, the possibility of COVID-19 should be considered regardless of positive findings for other pathogens.

    Topics: Amides; Anti-Bacterial Agents; Antiviral Agents; Betacoronavirus; Coinfection; Coronavirus Infections; COVID-19; Diagnosis, Differential; Glucocorticoids; Humans; Influenza A virus; Influenza, Human; Lung; Male; Middle Aged; Pandemics; Pneumonia, Viral; Pregnenediones; Pyrazines; Radiography; Real-Time Polymerase Chain Reaction; SARS-CoV-2

2020
De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery.
    Journal of medicinal chemistry, 2018, 10-11, Volume: 61, Issue:19

    Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.

    Topics: Alphainfluenzavirus; Amino Acid Sequence; Antiviral Agents; Coronavirus Infections; Drug Discovery; HEK293 Cells; Humans; Influenza, Human; Lipopeptides; Middle East Respiratory Syndrome Coronavirus; Protein Conformation, alpha-Helical; Viral Fusion Proteins; Virus Internalization

2018
Pharmacokinetics of favipiravir during continuous venovenous haemofiltration in a critically ill patient with influenza.
    Antiviral therapy, 2018, Volume: 23, Issue:5

    Favipiravir is a novel antiviral drug approved for influenza treatment in Japan. Little is known about favipiravir pharmacokinetics in critically ill patients. Here, we report a patient with influenza treated with favipiravir and undergoing continuous venovenous haemofiltration (CVVH) on the Intensive Care Unit of a tertiary hospital in the Netherlands. Pharmacokinetic analyses showed increased clearance and decreased plasma levels compared to healthy volunteers. CVVH has no clinically relevant contribution to total clearance. Despite susceptibility to favipiravir, the influenza virus was not cleared. A multi-disciplinary approach is needed to ensure optimal favipiravir treatment in critically ill patients.

    Topics: Amides; Antiviral Agents; Critical Illness; Fatal Outcome; Hemofiltration; Humans; Influenza, Human; Intensive Care Units; Male; Middle Aged; Netherlands; Oseltamivir; Pyrazines; Tertiary Care Centers

2018
Fate of new three anti-influenza drugs and one prodrug in the water environment.
    Chemosphere, 2017, Volume: 169

    We evaluated the environmental fate of new three anti-influenza drugs, favipiravir (FAV), peramivir (PER), and laninamivir (LAN), and an active prodrug of LAN, laninamivir octanoate (LANO), in comparison with four conventional drugs, oseltamivir (OS), oseltamivir carboxylate (OC), amantadine (AMN), and zanamivir (ZAN) by photodegradation, biodegradation, and sorption to river sediments. In addition, we conducted 9-month survey of urban rivers in the Yodo River basin from 2015 to 2016 (including the influenza season) to investigate the current status of occurrence of these drugs in the river environment. The results clearly showed that FAV and LAN rapidly disappeared through photodegradation (half-lives 1 and 8 h, respectively), followed by LANO which gradually disappeared through biodegradation (half-life, 2 days). The remained PER and conventional drugs were, however, persistent and transported from upstream to downstream sites. Rates of their sorption to river sediments were negligibly small. Detected levels remained were in the range from N.D. to 89 ng/L for the river waters and from N.D. to 906 ng/L in sewage effluent. However, all of the remained drugs were effectively removed by ozonation after chlorination at a sewage treatment plant. These findings suggest the importance of introducing ozonation for reduction of pollution loads in rivers, helping to keep river environments safe. To the best of our knowledge, this is the first evaluation of the removal effects of natural sunlight, biodegradation, and sorption to river sediments on FAV, PER, LAN, LANO, and a conventional drug, AMN.

    Topics: Acids, Carbocyclic; Amides; Antiviral Agents; Biodegradation, Environmental; Cyclopentanes; Environmental Monitoring; Fresh Water; Guanidines; Half-Life; Humans; Influenza, Human; Japan; Prodrugs; Pyrans; Pyrazines; Rivers; Seasons; Sewage; Sialic Acids; Water Pollutants, Chemical; Zanamivir

2017
Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir.
    Antiviral research, 2016, Volume: 132

    Favipiravir, a viral RNA-dependent RNA polymerase inhibitor, has recently been approved in Japan for influenza pandemic preparedness. Here, we conducted a cell-based screening system to evaluate the susceptibility of influenza viruses to favipiravir. In this assay, the antiviral activity of favipiravir is determined by inhibition of virus-induced cytopathic effect, which can be measured by using a colorimetric cell proliferation assay. To demonstrate the robustness of the assay, we compared the favipiravir susceptibilities of neuraminidase (NA) inhibitor-resistant influenza A(H1N1)pdm09, A(H3N2), A(H7N9) and B viruses and their sensitive counterparts. No significant differences in the favipiravir susceptibilities were found between NA inhibitor-resistant and sensitive viruses. We, then, examined the antiviral susceptibility of 57 pairs of influenza viruses isolated from patients pre- and post-administration of favipiravir in phase 3 clinical trials. We found that there were no viruses with statistically significant reduced susceptibility to favipiravir or NA inhibitors, although two of 20 paired A(H1N1)pdm09, one of 17 paired A(H3N2) and one of 20 paired B viruses possessed amino acid substitutions in the RNA-dependent RNA polymerase subunits, PB1, PB2 and PA, after favipiravir administration. This is the first report on the antiviral susceptibility of influenza viruses isolated from patients after favipiravir treatment.

    Topics: Amides; Antiviral Agents; Cell Line; Cells, Cultured; Cytopathogenic Effect, Viral; Dose-Response Relationship, Drug; Drug Resistance, Viral; Humans; Influenza A virus; Influenza, Human; Microbial Sensitivity Tests; Neuraminidase; Orthomyxoviridae; Pyrazines; Viral Proteins

2016
In vitro activity of favipiravir and neuraminidase inhibitor combinations against oseltamivir-sensitive and oseltamivir-resistant pandemic influenza A (H1N1) virus.
    Archives of virology, 2014, Volume: 159, Issue:6

    Few anti-influenza drugs are licensed in the United States for the prevention and therapy of influenza A and B virus infections. This shortage, coupled with continuously emerging drug resistance, as detected through a global surveillance network, seriously limits our anti-influenza armamentarium. Combination therapy appears to offer several advantages over traditional monotherapy in not only delaying development of resistance but also potentially enhancing single antiviral activity. In the present study, we evaluated the antiviral drug susceptibilities of fourteen pandemic influenza A (H1N1) virus isolates in MDCK cells. In addition, we evaluated favipiravir (T-705), an investigational drug with a broad antiviral spectrum and a unique mode of action, alone and in dual combination with the neuraminidase inhibitors (NAIs) oseltamivir, peramivir, or zanamivir, against oseltamivir-sensitive pandemic influenza A/California/07/2009 (H1N1) and oseltamivir-resistant A/Hong Kong/2369/2009 (H1N1) virus. Mean inhibitory values showed that the tested virus isolates remained sensitive to commonly used antiviral drugs, with the exception of the Hong Kong virus isolate. Drug dose-response curves confirmed complete drug resistance to oseltamivir, partial sensitivity to peramivir, and retained susceptibility to zanamivir and favipiravir against the A/Hong Kong/2369/2009 virus. Three-dimensional analysis of drug interactions using the MacSynergy(TM) II program indicated an overall synergistic interaction when favipiravir was combined with the NAIs against the oseltamivir-sensitive influenza virus, and an additive effect against the oseltamivir-resistant virus. Although the clinical relevance of these drug combinations remains to be evaluated, results obtained from this study support the use of combination therapy with favipiravir and NAIs for treatment of human influenza virus infections.

    Topics: Amides; Animals; Antiviral Agents; Cell Line; Dogs; Drug Resistance, Viral; Drug Synergism; Enzyme Inhibitors; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Microbial Sensitivity Tests; Oseltamivir; Pyrazines

2014
Combinations of favipiravir and peramivir for the treatment of pandemic influenza A/California/04/2009 (H1N1) virus infections in mice.
    Antiviral research, 2012, Volume: 94, Issue:1

    Favipiravir, an influenza virus RNA polymerase inhibitor, and peramivir, an influenza virus neuraminidase inhibitor, were evaluated alone and in combination against pandemic influenza A/California/04/2009 (H1N1) virus infections in mice. Infected mice were treated twice daily for 5 d starting 4 h after virus challenge. Favipiravir was 40%, 70%, and 100% protective at 20, 40, and 100 mg/kg/d. Peramivir was 30% protective at 0.5 mg/kg/d, but ineffective at lower doses when used as monotherapy. Combinations of favipiravir and peramivir increased the numbers of survivors by 10-50% when the 0.025, 0.05, and 0.1 mg/kg/d doses of peramivir were combined with 20 mg/kg/d favipiravir and when all doses of peramivir were combined with 40 mg/kg/d favipiravir. Three-dimensional analysis of drug interactions using the MacSynergy method indicates strong synergy for these drug combinations. In addition, an increase in lifespan for groups of mice treated with drug combinations, compared to the most effective monotherapy group, was observed for the 0.025, 0.05, and 0.1 mg/kg/d doses of peramivir combined with favipiravir at the 20 mg dose level. Therefore, the 20 mg/kg/d dose of favipiravir was selected for further combination studies. Increased survival was exhibited when this dose was combined with peramivir doses of 0.1, 0.25 and 0.5 mg/kg/d (1 mg/kg/d of peramivir alone was 100% protective in this experiment). Improved body weight relative to either compound alone was evident using 0.25, 0.5, and 1 mg/kg/d of peramivir. Significant reductions in lung hemorrhage score and lung weight were evident on day 6 post-infection. In addition, virus titers were reduced significantly on day 4 post-infection by combination therapy containing favipiravir combined with peramivir at 0.25 and 0.5 mg/kg/d. These data demonstrate that combinations of favipiravir and peramivir perform better than suboptimal doses of each compound alone for the treatment of influenza virus infections in mice.

    Topics: Acids, Carbocyclic; Amides; Animals; Antiviral Agents; California; Cyclopentanes; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Female; Guanidines; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Mice; Mice, Inbred BALB C; Pandemics; Pyrazines

2012
In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:6

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic (pdm) potential (swine triple reassortants, H2N2, H4N2, avian H7N2, and avian H5N1), including viruses which are resistant to the currently licensed anti-influenza drugs. All viruses were tested in a plaque reduction assay with MDCK cells, and a subset was also tested in both yield reduction and focus inhibition (FI) assays. For the majority of viruses tested, favipiravir significantly inhibited plaque formation at 3.2 muM (0.5 microg/ml) (50% effective concentrations [EC(50)s] of 0.19 to 22.48 muM and 0.03 to 3.53 microg/ml), and for all viruses, with the exception of a single dually resistant 2009 A(H1N1) virus, complete inhibition of plaque formation was seen at 3.2 muM (0.5 microg/ml). Due to the 2009 pandemic and increased drug resistance in circulating seasonal influenza viruses, there is an urgent need for new drugs which target influenza. This study demonstrates that favipiravir inhibits in vitro replication of a wide range of influenza viruses, including those resistant to currently available drugs.

    Topics: Amides; Animals; Antiviral Agents; Cell Line; Dogs; Drug Resistance, Viral; Humans; In Vitro Techniques; Influenza A virus; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H2N2 Subtype; Influenza A Virus, H5N1 Subtype; Influenza B virus; Influenza, Human; Microbial Sensitivity Tests; Pyrazines; Swine; Viral Plaque Assay; Virus Replication

2010
T-705 (favipiravir) activity against lethal H5N1 influenza A viruses.
    Proceedings of the National Academy of Sciences of the United States of America, 2010, Jan-12, Volume: 107, Issue:2

    The neuraminidase inhibitors oseltamivir and zanamivi are used to treat H5N1 influenza. However, oseltamivir-resistant H5N1 viruses have been isolated from oseltamivir-treated patients. Moreover, reassortment between H5N1 viruses and oseltamvir-resistant human H1N1 viruses currently circulating could create oseltamivir-resistant H5N1 viruses, rendering the oseltamivir stockpile obsolete. Therefore, there is a need for unique and effective antivirals to combat H5N1 influenza viruses. The investigational drug T-705 (favipiravir; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has antiviral activity against seasonal influenza viruses and a mouse-adapted H5N1 influenza virus derived from a benign duck virus. However, its efficacy against highly pathogenic H5N1 viruses, which are substantially more virulent, remains unclear. Here, we demonstrate that T-705 effectively protects mice from lethal infection with oseltamivir-sensitive or -resistant highly pathogenic H5N1 viruses. Furthermore, our biochemical analysis suggests that T-705 ribofuranosyl triphosphate, an active form of T-705, acts like purines or purine nucleosides in human cells and does not inhibit human DNA synthesis. We conclude that T-705 shows promise as a therapeutic agent for the treatment of highly pathogenic H5N1 influenza patients.

    Topics: Aged; Amides; Animals; Antiviral Agents; Cell Line; Child; DNA Replication; DNA-Directed DNA Polymerase; Dogs; Drug Resistance, Viral; Humans; Influenza A Virus, H5N1 Subtype; Influenza, Human; Kidney; Kinetics; Lung; Oseltamivir; Pyrazines; Ribavirin

2010
Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:3

    T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was inhibitory to four strains of avian H5N1 influenza virus in MDCK cells, with the 90% effective concentrations ranging from 1.3 to 7.7 microM, as determined by a virus yield reduction assay. The efficacy was less than that exerted by oseltamivir carboxylate or zanamivir but was greater than that exerted by ribavirin. Experiments with mice lethally infected with influenza A/Duck/MN/1525/81 (H5N1) virus showed that T-705 administered per os once, twice, or four times daily for 5 days beginning 1 h after virus exposure was highly inhibitory to the infection. Dosages from 30 to 300 mg/kg of body weight/day were well tolerated; each prevented death, lessened the decline of arterial oxygen saturation (SaO(2)), and inhibited lung consolidation and lung virus titers. Dosages from 30 to 300 mg/kg/day administered once or twice daily also significantly prevented the death of the mice. Oseltamivir (20 mg/kg/day), administered per os twice daily for 5 days, was tested in parallel in two experiments; it was only weakly effective against the infection. The four-times-daily T-705 treatments at 300 mg/kg/day could be delayed until 96 h after virus exposure and still significantly inhibit the infection. Single T-705 treatments administered up to 60 h after virus exposure also prevented death and the decline of SaO(2). Characterization of the pathogenesis of the duck influenza H5N1 virus used in these studies was undertaken; although the virus was highly pathogenic to mice, it was less neurotropic than has been described for clinical isolates of the H5N1 virus. These data indicate that T-705 may be useful for the treatment of avian influenza virus infections.

    Topics: Amides; Animals; Antiviral Agents; Cells, Cultured; Cytopathogenic Effect, Viral; Humans; Influenza A Virus, H5N1 Subtype; Influenza, Human; Lung; Mice; Mice, Inbred BALB C; Oseltamivir; Oxygen; Pyrazines; Survival Analysis; Virus Replication

2007
In vitro and in vivo activities of anti-influenza virus compound T-705.
    Antimicrobial agents and chemotherapy, 2002, Volume: 46, Issue:4

    T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has been found to have potent and selective inhibitory activity against influenza virus. In an in vitro plaque reduction assay, T-705 showed potent inhibitory activity against influenza A, B, and C viruses, with 50% inhibitory concentrations (IC(50)s) of 0.013 to 0.48 microg/ml, while it showed no cytotoxicity at concentrations up to 1,000 microg/ml in Madin-Darby canine kidney cells. The selectivity index for influenza virus was more than 2,000. It was also active against a neuraminidase inhibitor-resistant virus and some amantadine-resistant viruses. T-705 showed weak activity against non-influenza virus RNA viruses, with the IC(50)s being higher for non-influenza virus RNA viruses than for influenza virus, and it had no activity against DNA viruses. Orally administered T-705 at 100 mg/kg of body weight/day (four times a day) for 5 days significantly reduced the mean pulmonary virus yields and the rate of mortality in mice infected with influenza virus A/PR/8/34 (3 x 10(2) PFU). These results suggest that T-705 may be a compound that is useful and highly selective against influenza virus infections and that has a mode of action different from those of commercially available drugs, such as amantadine, rimantadine, and neuraminidase inhibitors.

    Topics: Amides; Animals; Antiviral Agents; Cell Line; Drug Screening Assays, Antitumor; Humans; Influenza, Human; Lung; Male; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Orthomyxoviridae; Pyrazines; Viruses

2002