favipiravir and Arenaviridae-Infections

favipiravir has been researched along with Arenaviridae-Infections* in 3 studies

Other Studies

3 other study(ies) available for favipiravir and Arenaviridae-Infections

ArticleYear
l-like 3-deazaneplanocin analogues: Synthesis and antiviral properties.
    Bioorganic & medicinal chemistry letters, 2019, 10-01, Volume: 29, Issue:19

    The potent antiviral properties of 3-deazaneplanocin, 3-deaza-isoneplanocins (1) and recently discovered l-like carbocyclic nucleosides (2, 3 and 4) prompted us to pursue rationally conceived l-like 3-deazaneplanocin analogues. The synthesis of those analogues including l-like 3-deazaneplanocin (5), l-like 3-bromo-3-deazaneplanocin (6), and l-like 5'-fluoro-5'-deoxy-3-deazaneplanocin (7), was accomplished from a common intermediate, (-)-cyclopentenone (8). Antiviral analysis found 5 and 6 to display favorable activity against the Ebola virus, as expected for 3-deazaadenine carbocyclic nucleosides. Compound 5 also showed activity against arenaviruses, including Pinchinde and Tacaribe.

    Topics: Adenosine; Antiviral Agents; Arenaviridae; Arenaviridae Infections; Ebolavirus; Hemorrhagic Fever, Ebola; Humans; Molecular Structure

2019
Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin.
    PloS one, 2008, Volume: 3, Issue:11

    A growing number of arenaviruses are known to cause viral hemorrhagic fever (HF), a severe and life-threatening syndrome characterized by fever, malaise, and increased vascular permeability. Ribavirin, the only licensed antiviral indicated for the treatment of certain arenaviral HFs, has had mixed success and significant toxicity. Since severe arenaviral infections initially do not present with distinguishing symptoms and are difficult to clinically diagnose at early stages, it is of utmost importance to identify antiviral therapies effective at later stages of infection. We have previously reported that T-705, a substituted pyrazine derivative currently under development as an anti-influenza drug, is highly active in hamsters infected with Pichinde virus when the drug is administered orally early during the course of infection. Here we demonstrate that T-705 offers significant protection against this lethal arenaviral infection in hamsters when treatment is begun after the animals are ill and the day before the animals begin to succumb to disease. Importantly, this coincides with the time when peak viral loads are present in most organs and considerable tissue damage is evident. We also show that T-705 is as effective as, and less toxic than, ribavirin, as infected T-705-treated hamsters on average maintain their weight better and recover more rapidly than animals treated with ribavirin. Further, there was no added benefit to combination therapy with T-705 and ribavirin. Finally, pharmacokinetic data indicate that plasma T-705 levels following oral administration are markedly reduced during the latter stages of disease, and may contribute to the reduced efficacy seen when treatment is withheld until day 7 of infection. Our findings support further pre-clinical development of T-705 for the treatment of severe arenaviral infections.

    Topics: Absorption; Administration, Oral; Alanine Transaminase; Amides; Animals; Arenaviridae Infections; Aspartate Aminotransferases; Cricetinae; Disease Models, Animal; Disease Progression; Female; Hemorrhagic Fevers, Viral; Interferon Type I; Liver Diseases; Mesocricetus; Pichinde virus; Pyrazines; Ribavirin; Survival Analysis; Treatment Outcome; Viral Load

2008
In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:9

    There is a need for the development of effective antivirals for the treatment of severe viral diseases caused by members of the virus families Bunyaviridae and Arenaviridae. The pyrazine derivative T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has demonstrated remarkable antiviral activity against influenza virus and, to a lesser degree, against some other RNA viruses (Y. Furuta, K. Takahashi, Y. Fukuda, M. Kuno, T. Kamiyama, K. Kozaki, N. Nomura, H. Egawa, S. Minami, Y. Watanabe, H. Narita, and K. Shiraki, Antimicrob. Agents Chemother., 46:977-981, 2002). Here, we report that T-705 is highly active against a panel of bunyaviruses (La Crosse, Punta Toro, Rift Valley fever, and sandfly fever viruses) and arenaviruses (Junin, Pichinde, and Tacaribe viruses) by cytopathic effect and virus yield reduction cell-based assays. The 50% effective concentrations for T-705 ranged from 5 to 30 microg/ml and 0.7 to 1.2 microg/ml against the bunyaviruses and arenaviruses examined, respectively. We also demonstrate that orally administered T-705 is efficacious in treating Punta Toro virus in the mouse and hamster infection models, as well as Pichinde virus infection in hamsters. When administered twice daily for 5 to 6 days, beginning 4 h pre- or 24 h post-Punta Toro virus challenge, a 30-mg/kg of body weight/day dose provided complete protection from death and limited viral burden and liver disease. A dose of 50 mg/kg/day was found to be optimal for treating Pichinde infection and limiting viral replication and disease severity. In general, T-705 was found to be more active than ribavirin in cell-based assays and in vivo, as reflected by substantially greater therapeutic indexes. Our results suggest that T-705 may be a viable alternative for the treatment of life-threatening bunyaviral and arenaviral infections.

    Topics: Amides; Animals; Antiviral Agents; Arenaviridae Infections; Bunyaviridae Infections; Cell Line; Cricetinae; Haplorhini; Liver; Mice; Pyrazines; Ribavirin; Viral Load

2007