farnesyl-pyrophosphate has been researched along with Ovarian-Neoplasms* in 3 studies
3 other study(ies) available for farnesyl-pyrophosphate and Ovarian-Neoplasms
Article | Year |
---|---|
Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer.
Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood.. Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis.. The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001).. Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings. Topics: Apoptosis; Atorvastatin; Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Female; Gene Expression; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Interleukin-6; Interleukin-8; Mevalonic Acid; Ovarian Neoplasms; Polyisoprenyl Phosphates; Prenylation; Rosuvastatin Calcium; Sesquiterpenes; Simvastatin; Transforming Growth Factor beta1; Vascular Endothelial Growth Factor A; Zoledronic Acid | 2020 |
Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase.
Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose- and time-dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase-8 and -9; BID cleavage, cytochrome C release and PARP cleavage. Statin-sensitive cancers expressed high levels of HMG-CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG-CoA reductase since mevalonate pre-incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG-CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies. Topics: Cell Death; Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Drug Synergism; Epithelium; Female; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Genital Neoplasms, Female; Humans; Hydroxymethylglutaryl CoA Reductases; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lipids; Lovastatin; Mevalonic Acid; Ovarian Neoplasms; Polyisoprenyl Phosphates; Pravastatin; Sesquiterpenes; Signal Transduction; Simvastatin; Uterine Cervical Neoplasms; Water | 2010 |
The farnesyltransferase inhibitor, FPT inhibitor III upregulates Bax and Bcl-xs expression and induces apoptosis in human ovarian cancer cells.
Deregulation in the ras oncogene is a common event in many types of human cancer. Our previous study clearly demonstrated that genetic alterations of ras oncogene are frequently found in human epithelial ovarian cancer. Recent reports have indicated that farnesyltransferase is involved in the regulation of post-translational modification and biological function of Ras proteins. Here, we report that a newly synthesized farnesyltransferase inhibitor, FPT inhibitor III, upregulates Bax and Bcl-xs expression and induces apoptosis in human ovarian cancer cells. This is a critical finding that farnesyltransferase inhibitors may directly activate apoptotic signaling pathways in cancer cells and may help to provide a new strategy in the treatment of human cancer. Topics: Alkyl and Aryl Transferases; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; bcl-X Protein; Blotting, Western; Cell Division; Chromatin; Dose-Response Relationship, Drug; Enzyme Inhibitors; Farnesyltranstransferase; Female; Humans; Membrane Proteins; Ovarian Neoplasms; Polyisoprenyl Phosphates; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Sesquiterpenes; Tumor Cells, Cultured; Up-Regulation | 1998 |