farnesyl-pyrophosphate has been researched along with Adenocarcinoma* in 3 studies
3 other study(ies) available for farnesyl-pyrophosphate and Adenocarcinoma
Article | Year |
---|---|
Anticancer activity of novel unnatural synthetic isoprenoids.
The KRAS oncogene has a high prevalence in solid malignancies. Targeting KRAS and inappropriate activation of the MAPK pathway with novel drugs is of interest. This study developed and screened a library of compounds designed to inhibit KRAS signaling by altering prenyl function.. To screen a library of novel farnesyl analogs for their anticancer activity in human lung cancer and breast cancer cell lines. To evaluate if the designed and actual pharmacology are congruent.. Sixty-seven novel compounds were tested and 70% of them screened positive for activity in at least one cell line. Two active compounds inhibited phosphorylation of MAP kinase consistent with KRAS inhibition.. Although 47 of the 67 novel agents screened positive for activity, none of them were highly potent. However, targeting RAS with compounds that compete with farnesyl and geranylgeranyl modification of the protein remains viable and further work is already underway to create second generation molecules. Topics: Adenocarcinoma; Alkyl and Aryl Transferases; Breast Neoplasms; Cell Line, Tumor; Drug Screening Assays, Antitumor; Genes, ras; Humans; Lung Neoplasms; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Polyisoprenyl Phosphates; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); ras Proteins; Sesquiterpenes; Terpenes | 2010 |
Statins inhibit proliferation and induce apoptosis in Barrett's esophageal adenocarcinoma cells.
The incidence and mortality rates from esophageal adenocarcinoma (EAC) are rapidly increasing in the western world. Chemoprevention is being advocated to reduce the burden of disease. Statins are used clinically to treat hypercholesterolemia, and have an excellent safety profile. Statins reduce the intracellular availability of several biosynthetic intermediates important in intracellular signaling. We hypothesized that statins may effect EAC proliferation or apoptosis.. The OE33 and BIC-1 EAC cell lines and simvastatin, lovastatin, and pravastatin were studied. Proliferation was quantified by thiazoyl blue colormetric and bromodeoxyuridine incorporation assays. Apoptosis was determined using assays for intracellular nucleosomes and caspase-3 activity. Detection of phosphorylated kinases, affinity precipitation, immunoblotting, and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to determine the effects on intracellular signaling.. All three statins reduced viable cell number and inhibited proliferation in a similar dose-dependent manner. Statins induced apoptosis and enhanced the antiproliferative effect of NS-398, a selective cyclooxygenase (COX)-2 inhibitor. The effects were dependent on farnesylation, but not geranylgeranylation, of intracellular targets, and statins reduced serum-stimulated Ras activity . Simvastatin inhibited activation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) but not c-Jun NH(2)-terminal kinase or p38 mitogen-activated protein (MAP) kinase. Statin treatment increased messenger RNA (mRNA) and protein expression of the proapoptotic proteins Bax and Bad, but protein levels of the antiapoptotic proteins B-cell lymphoma (Bcl)-2 and Bcl-X(L) were unchanged.. Statins inhibit proliferation and induce apoptosis in EAC cells via inhibition of Ras farnesylation and inhibition of the ERK and Akt signaling pathways. Statins may have some potential as chemopreventative and adjuvant chemotherapeutic agents in EAC. Topics: Adenocarcinoma; Analysis of Variance; Animals; Apoptosis; Barrett Esophagus; Caspase 3; Cell Division; Cell Line, Tumor; Dose-Response Relationship, Drug; Esophageal Neoplasms; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immunoblotting; Lovastatin; Mevalonic Acid; Nitrobenzenes; Polyisoprenyl Phosphates; Pravastatin; Protein Kinases; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sesquiterpenes; Signal Transduction; Simvastatin; Sulfonamides | 2008 |
Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line.
Prostate cancer cells derived from transgenic mice with adenocarcinoma of the prostate (TRAMP cells) were treated with the HMG-CoA reductase inhibitor, lovastatin. This caused inactivation of the small GTPase RhoA, actin stress fiber disassembly, cell rounding, growth arrest in the G1 phase of the cell cycle, cell detachment and apoptosis. Addition of geranylgeraniol (GGOL) in the presence of lovastatin, to stimulate protein geranylgeranylation, prevented lovastatin's effects. That is, RhoA was activated, actin stress fibers were assembled, the cells assumed a flat morphology and cell growth resumed. The following observations support an essential role for RhoA in TRAMP cell growth: (1) TRAMP cells expressing dominant-negative RhoA (T19N) mutant protein displayed few actin stress fibers and grew at a slower rate than controls (35 h doubling time for cells expressing RhoA (T19N) vs 20 h for untransfected cells); (2) TRAMP cells expressing constitutively active RhoA (Q63L) mutant protein displayed a contractile phenotype and grew faster than controls (13 h doubling time). Interestingly, addition of farnesol (FOL) with lovastatin, to stimulate protein farnesylation, prevented lovastatin-induced cell rounding, cell detachment and apoptosis, and stimulated cell spreading to a spindle shaped morphology. However, RhoA remained inactive and growth arrest persisted. The morphological effects of FOL addition were prevented in TRAMP cells expressing dominant-negative H-Ras (T17N) mutant protein. Thus, it appears that H-Ras is capable of inducing cell spreading, but incapable of supporting cell proliferation, in the absence of geranylgeranylated proteins like RhoA. Topics: Actin Cytoskeleton; Adenocarcinoma; Alkyl and Aryl Transferases; Animals; Antineoplastic Agents; Apoptosis; Cell Adhesion; Cell Division; Cell Size; Diterpenes; Drug Interactions; Enzyme Activation; Farnesol; G1 Phase; Genes, ras; GTP-Binding Proteins; Guanosine Triphosphate; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lovastatin; Male; Mevalonic Acid; Mice; Mice, Transgenic; Polyisoprenyl Phosphates; Prostatic Neoplasms; Protein Prenylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins p21(ras); rac GTP-Binding Proteins; rhoA GTP-Binding Protein; Sesquiterpenes; Tumor Cells, Cultured | 1999 |