exudates and West-Nile-Fever

exudates has been researched along with West-Nile-Fever* in 6 studies

Reviews

1 review(s) available for exudates and West-Nile-Fever

ArticleYear
Insurance and epidemics: SARS, West Nile virus and Nipah virus.
    Journal of insurance medicine (New York, N.Y.), 2003, Volume: 35, Issue:3-4

    Severe acute respiratory syndrome (SARS) reminds us that sudden disease emergence is a permanent part of our world--and should be anticipated in our planning. Historically the emergence of new diseases has had little or no impact beyond a small, localized cluster of infections. However, given just the right conditions, a highly virulent pathogen can suddenly spread across time and space with massive consequences, as has occurred on several occasions in human history. In the wake of the SARS outbreak, we are now forced to confront the unpleasant fact that human activities are increasing the frequency and severity of these kinds of emergences. The idea of more frequent biological "invasions" with economic and societal impacts comparable to SARS, presents stakeholders in and the global economy with unprecedented new risks, challenges and even opportunities. As a major contributor to economic stability, the insurance industry must follow these trends very closely and develop scenarios to anticipate these events.

    Topics: China; Communicable Diseases, Emerging; Disease Outbreaks; Henipavirus Infections; Humans; Insurance, Disability; Insurance, Life; Malaysia; Nipah Virus; Population Surveillance; Severe Acute Respiratory Syndrome; United States; West Nile Fever

2003

Other Studies

5 other study(ies) available for exudates and West-Nile-Fever

ArticleYear
Circulation of West Nile virus in mosquitoes approximate to the migratory bird stopover in West Coast Malaysia.
    PLoS neglected tropical diseases, 2023, Volume: 17, Issue:4

    Being a tropical country with a conducive environment for mosquitoes, mosquito-borne illnesses such as dengue, chikungunya, lymphatic filariasis, malaria, and Japanese encephalitis are prevalent in Malaysia. Recent studies reported asymptomatic infection of West Nile virus (WNV) in animals and humans, but none of the studies included mosquitoes, except for one report made half a century ago. Considering the scarcity of information, our study sampled mosquitoes near migratory bird stopover wetland areas of West Coast Malaysia located in the Kuala Gula Bird Sanctuary and Kapar Energy Venture, during the southward migration period in October 2017 and September 2018. Our previous publication reported that migratory birds were positive for WNV antibody and RNA. Using a nested RT-PCR analysis, WNV RNA was detected in 35 (12.8%) out of 285 mosquito pools consisting of 2,635 mosquitoes, most of which were Culex spp. (species). Sanger sequencing and phylogenetic analysis revealed that the sequences grouped within lineage 2 and shared 90.12%-97.01% similarity with sequences found locally as well as those from Africa, Germany, Romania, Italy, and Israel. Evidence of WNV in the mosquitoes substantiates the need for continued surveillance of WNV in Malaysia.

    Topics: Animals; Birds; Culex; Culicidae; Humans; Malaysia; Mosquito Vectors; Phylogeny; RNA; West Nile Fever; West Nile virus

2023
Serological evidence of West Nile viral infection in archived swine serum samples from Peninsular Malaysia.
    Journal of veterinary science, 2021, Volume: 22, Issue:3

    West Nile virus (WNV), a neurotropic arbovirus, has been detected in mosquitos, birds, wildlife, horses, and humans in Malaysia, but limited information is available on WNV infection in Malaysian pigs. We tested 80 archived swine serum samples for the presence of WNV antibody and West Nile (WN) viral RNA using ID Screen West Nile Competition Multi-species enzyme-linked immunosorbent assay kits and WNV-specific primers in reverse transcription polymerase chain reaction assays, respectively. A WNV seroprevalence of 62.5% (50/80) at 95% confidence interval (51.6%-72.3%) was recorded, with a significantly higher seroprevalence among young pigs (weaner and grower) and pigs from south Malaysia. One sample was positive for Japanese encephalitis virus antibodies; WN viral RNA was not detected in any of the serum samples.

    Topics: Animals; Antibodies, Viral; Malaysia; Prevalence; RNA, Viral; Seroepidemiologic Studies; Sus scrofa; Swine; Swine Diseases; West Nile Fever; West Nile virus

2021
Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories.
    The Journal of general virology, 2017, Volume: 98, Issue:4

    Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.

    Topics: Animals; Disease Models, Animal; Female; Humans; Malaysia; Mice; Phylogeny; Virulence; West Nile Fever; West Nile virus

2017
Potential Reservoir and Associated Factors for West Nile Virus in Three Distinct Climatological Zones.
    Vector borne and zoonotic diseases (Larchmont, N.Y.), 2017, Volume: 17, Issue:10

    West Nile virus (WNV) is a zoonotic single-strand RNA arbovirus (family Flaviviridae: Flavivirus), transmitted among avian hosts in enzootic cycles by a mosquito vector. The virus has a significant disease effect on humans and equines when it bridges into a cycle with various sequelae with epidemic potential. This study was carried out to identify the potential spectrum of WNV hosts in three geographic areas with climatologically distinct features: Malaysia, Qatar, and the United States of America (U.S.). Serum samples were collected from avian and mammal species suspected to be reservoirs for the virus at these areas in a cross-sectional epidemiologic study. The samples were tested for the presence of antibodies against the virus using an enzyme-linked immunosorbent assay. Data on putative risk factors were also collected and analyzed for significance of association with seropositivity using the logistic regression analysis. Among the tested avian and mammalian species, raccoons had the highest seroconversion rate (54%) followed by crows (30%), horses (27%), camels (10%), other avian species (7%), and canine species (3%). It was almost twice as likely to detect seroconversion among these mammalian and avian species in the fall in comparison to other seasons of the year. Only mammalian and avian species and seasons of the year were significantly associated with the likelihood of seroconversion to WNV when we controlled for other factors in the multivariate analysis. Our data from the U.S. showed that raccoons and camels are susceptible to infection by the virus and may play a role in the perpetuation of endemic foci for the disease.

    Topics: Animals; Birds; Climate; Disease Reservoirs; Malaysia; Mammals; Qatar; United States; West Nile Fever; West Nile virus; Zoonoses

2017
Seroprevalence screening for the West Nile virus in Malaysia's Orang Asli population.
    Parasites & vectors, 2014, Dec-17, Volume: 7

    West Nile virus (WNV) infection is an emerging zoonotic disease caused by an RNA virus of the genus Flavivirus. WNV is preserved in the environment through cyclic transmission, with mosquitoes, particularly Culex species, serving as a vector, birds as an amplifying host and humans and other mammals as dead-end hosts. To date, no studies have been carried out to determine the prevalence of the WNV antibody in Malaysia. The aim of this study was to screen for the seroprevalence of the WNV in Malaysia's Orang Asli population.. Serum samples of 742 Orang Asli were collected in seven states in peninsular Malaysia. The samples were assessed to determine the seroprevalence of WNV immunoglobulin (Ig)G with the WNV IgG enzyme-linked immunosorbent assay (ELISA) method. For each individual, we documented the demographic factors. Anti-dengue and anti-tick-borne encephalitis virus IgG ELISA were also performed to rule out a cross reaction. All statistical analyses were performed using the GraphPad Prism 6 (GraphPad Software, Inc.); p values of less than 0.05 were considered significant.. The serosurvey included 298 men (40.16%) and 444 women (59.84%) of Malaysia's Orang Asli. Anti-WNV IgG was found in 9 of the 742 samples (1.21%). The seroprevalence was 0.67% (2 of 298) in men and 1.58% (7 of 444) in women. The presence of anti-WNV IgG was found not to be associated with gender but, however, did correlate with age. The peak seroprevalence was found to be 2.06% (2 of 97) in individuals between 30 to 42 years of age.. No previous studies have examined the seroprevalence of the WNV antibody in the human population in Malaysia, and no clinical reports of infections have been made. Screening for the WNV seroprevalence is very significant because of many risk factors contribute to the presence of WNV in Malaysia, such as the abundance of Culex mosquitoes as the main vector and a high degree of biodiversity, including migratory birds that serve as a reservoir to the virus.

    Topics: Adolescent; Adult; Aged; Animals; Antibodies, Viral; Birds; Culex; Female; Humans; Insect Vectors; Malaysia; Male; Middle Aged; Population Groups; Seroepidemiologic Studies; West Nile Fever; West Nile virus; Young Adult; Zoonoses

2014