exendin-(9-39) has been researched along with Hyperglycemia* in 9 studies
1 review(s) available for exendin-(9-39) and Hyperglycemia
Article | Year |
---|---|
Central glucagon-like peptide-I in the control of feeding.
Topics: Animals; Brain; Feeding Behavior; Genes, fos; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Hyperglycemia; Hyperinsulinism; Neurons; Peptide Fragments; Protein Precursors; Rats; Rats, Zucker; Receptors, Glucagon; Venoms | 1996 |
1 trial(s) available for exendin-(9-39) and Hyperglycemia
Article | Year |
---|---|
Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia.
The role of glucagon-like peptide-1 (GLP-1) in the regulation of gastric emptying is uncertain. The aim of this study was to determine the effects of endogenous GLP-1 on gastric emptying, glucose absorption, and glycemia in health.. Ten healthy fasted subjects (eight males, two females; 48 +/- 7 yr) received the specific GLP-1 antagonist, exendin(9-39) amide [ex(9-39)NH(2)] (300 pmol/kg x min iv), or placebo, between -30 and 180 min in a randomized, double-blind, crossover fashion. At 0 min, a mashed potato meal ( approximately 2600 kJ) containing 3 g 3-ortho-methyl-D-glucose (3-OMG) and labeled with 20 MBq (99m)Technetium-sulphur colloid was eaten. Gastric emptying, including the time taken for 50% of the meal to empty from the stomach (T50), blood glucose, plasma 3-OMG, and plasma insulin were measured.. Ex(9-39)NH(2) accelerated gastric emptying [T50 ex(9-39)NH(2), 68 +/- 8 min, vs. placebo, 83 +/- 7 min; P < 0.001] and increased the overall glycemic response to the meal [area under the curve (0-180 min) ex(9-39)NH(2), 1540 +/- 106 mmol/liter x min, vs. placebo, 1388 +/- 90 mmol/liter x min; P < 0.02]. At 60 min, ex(9-39)NH(2) increased the rise in glycemia [ex(9-39)NH(2), 9.9 +/- 0.5 mmol/liter, vs. placebo, 8.4 +/- 0.5 mmol/liter; P < 0.01], plasma 3-OMG [ex(9-39)NH(2), 0.25 +/- 0.01 mmol/liter, vs. placebo, 0.21 +/- 0.01 mmol/liter; P < 0.05], and plasma insulin [ex(9-39)NH(2), 82 +/- 13 mU/liter, vs. placebo, 59 +/- 9 mU/liter; P < 0.05] concentrations. There was a close within-subject correlation between glycemia and gastric emptying [e.g. at 60 min, the increment in blood glucose and gastric emptying (T50); r = -0.89; P < 0.001].. GLP-1 plays a physiological role to slow gastric emptying in health, which impacts on glucose absorption and, hence, postprandial glycemia. Topics: Adult; Blood Glucose; Cross-Over Studies; Double-Blind Method; Female; Gastric Emptying; Glucagon-Like Peptide 1; Guanosine; Health; Hormone Antagonists; Humans; Hyperglycemia; Insulin; Male; Middle Aged; Peptide Fragments; Placebos | 2010 |
7 other study(ies) available for exendin-(9-39) and Hyperglycemia
Article | Year |
---|---|
Intestinal electrical stimulation attenuates hyperglycemia and prevents loss of pancreatic β cells in type 2 diabetic Goto-Kakizaki rats.
Recently, intestinal electrical stimulation (IES) has been reported to result in weight loss; however, it is unclear whether it has a therapeutic potential for diabetes. The aim of the present study was to explore the potential hypoglycemic effects of IES and its possible mechanisms involving β cells in diabetic rats.. Diabetic Goto-Kakizaki (GK) rats were chronically implanted with one pair of electrodes in the duodenum. The oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed with or without IES, and plasma glucagon-like peptide-1 (GLP-1) and insulin level were measured. In the other two OGTT sessions, rats were treated with either Exendin (9-39) (GLP-1 antagonist) or Exendin (9-39) plus IES to investigate the underlying mechanism involving GLP-1. Gastric emptying and small intestinal transit were also measured with or without IES. In a chronic study, GK rats were treated with IES or Sham-IES for 8 weeks. Blood glucose, plasma GLP-1 and insulin level, body weight, and food intake were measured. Pancreas weight, islet β-cell apoptosis, and proliferation were also analyzed.. Acute IES reduced blood glucose level from 60 to 120 min during OGTT by 16-20% (all p < 0.05, vs. Sham-IES). GLP-1 antagonist significantly blocked the inhibitory effect of IES on hyperglycemia from 15 to 120 min (all p < 0.05). IES accelerated the small intestinal transit by 15% (p = 0.004). After 8 weeks of chronic stimulation, IES significantly reduced blood glucose (p < 0.05) and body weight (p = 0.02) and increased the plasma GLP-1 concentration (p < 0.05). Furthermore, we observed that chronic IES reduced pancreatic β-cell apoptosis (p = 0.045), but showed no effects on β-cell proliferation.. Our study firstly proved the hypoglycemic effect of IES in a rodent model of type 2 diabetes, possibly attributed to the increasing GLP-1 secretion and improvement in β-cell functions. Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Eating; Electric Stimulation Therapy; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hyperglycemia; Insulin; Insulin-Secreting Cells; Intestines; Male; Peptide Fragments; Rats | 2019 |
β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. Topics: Animals; Caspase 3; Cell Membrane; Cell-Derived Microparticles; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Exocytosis; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hyperglycemia; Inflammation; Insulin; Insulin-Secreting Cells; Liraglutide; MAP Kinase Signaling System; Peptide Fragments; Rats; SNARE Proteins; Thromboplastin | 2016 |
Functional and Molecular Adaptations of Enteroendocrine L-Cells in Male Obese Mice Are Associated With Preservation of Pancreatic α-Cell Function and Prevention of Hyperglycemia.
Glucose homeostasis depends on the coordinated secretion of glucagon, insulin, and Glucagon-like peptide (GLP)-1 by pancreas and intestine. Obesity, which is associated with an increased risk of developing insulin resistance and type 2 diabetes, affects the function of these organs. Here, we investigate the functional and molecular adaptations of proglucagon-producing cells in obese mice to better define their involvement in type 2 diabetes development. We used GLU-Venus transgenic male mice specifically expressing Venus fluorochrome in proglucagon-producing cells. Mice were subjected to 16 weeks of low-fat diet or high-fat diet (HFD) and then subdivided by measuring glycated hemoglobin (HbA1c) in 3 groups: low-fat diet mice and I-HFD (glucose-intolerant) mice with similar HbA1c and H-HFD (hyperglycemic) mice, which exhibited higher HbA1c. At 16 weeks, both HFD groups exhibited similar weight gain, hyperinsulinemia, and insulin resistance. However, I-HFD mice exhibited better glucose tolerance compared with H-HFD mice. I-HFD mice displayed functional and molecular adaptations of enteroendocrine L-cells resulting in increased intestinal GLP-1 biosynthesis and release as well as maintained pancreatic α- and β-cell functions. By contrast, H-HFD mice exhibited dysfunctional L, α- and β-cells with increased β- and L-cell numbers. Administration of the GLP-1R antagonist Exendin9-39 in I-HFD mice led to hyperglycemia and alterations of glucagon secretion without changes in insulin secretion. Our results highlight the cross-talk between islet and intestine endocrine cells and indicate that a compensatory adaptation of L-cell function in obesity plays an important role in preserving glucose homeostasis through the control of pancreatic α-cell functions. Topics: Animals; Diabetes Mellitus, Type 2; Diet, High-Fat; Enteroendocrine Cells; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Hyperglycemia; Insulin-Secreting Cells; Male; Mice, Inbred C57BL; Mice, Transgenic; Obesity; Peptide Fragments; Phenotype | 2016 |
Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice.
Mice genetically deficient in the glucagon receptor (Gcgr(-/-)) show improved glucose tolerance, insulin sensitivity, and α-cell hyperplasia. In addition, Gcgr(-/-) mice do not develop diabetes after chemical destruction of β-cells. Since fibroblast growth factor 21 (FGF21) has insulin-independent glucose-lowering properties, we investigated whether FGF21 was contributing to diabetes resistance in insulin-deficient Gcgr(-/-) mice. Plasma FGF21 was 25-fold higher in Gcgr(-/-) mice than in wild-type mice. FGF21 was found to be expressed in pancreatic β- and α-cells, with high expression in the hyperplastic α-cells of Gcgr(-/-) mice. FGF21 expression was also significantly increased in liver and adipose tissue of Gcgr(-/-) mice. To investigate the potential antidiabetic actions of FGF21 in insulin-deficient Gcgr(-/-) mice, an FGF21-neutralizing antibody was administered prior to oral glucose tolerance tests (OGTTs). FGF21 neutralization caused a decline in glucose tolerance in insulin-deficient Gcgr(-/-) mice during the OGTT. Despite this decline, insulin-deficient Gcgr(-/-) mice did not develop hyperglycemia. Glucagon-like peptide 1 (GLP-1) also has insulin-independent glucose-lowering properties, and an elevated circulating level of GLP-1 is a known characteristic of Gcgr(-/-) mice. Neutralization of FGF21, while concurrently blocking the GLP-1 receptor with the antagonist Exendin 9-39 (Ex9-39), resulted in significant hyperglycemia in insulin-deficient Gcgr(-/-) mice, while blocking with Ex9-39 alone did not. In conclusion, FGF21 acts additively with GLP-1 to prevent insulinopenic diabetes in mice lacking glucagon action. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Fibroblast Growth Factors; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Secreting Cells; Glucose Tolerance Test; Hyperglycemia; Insulin-Secreting Cells; Liver; Mice; Mice, Knockout; Pancreas; Peptide Fragments; Receptors, Glucagon | 2014 |
Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.
Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agonist Exendin-4 attenuated apoptosis in neonatal rat ventricular cardiomyocytes cultured in high (33 mM) glucose. This protective effect was mimicked by the cAMP inducer forskolin. The Exendin-4 protective effect was blocked by the Glp1r antagonist Exendin(9-39) or the PKA antagonist H-89. Exendin-4 also protected cardiomyocytes from hydrogen peroxide (H2O2)-induced cell death. Cardiomyocyte protection by Exendin-4 was not due to reduced reactive oxygen species levels. Instead, Exendin-4 treatment reduced endoplasmic reticulum (ER) stress, demonstrated by decreased expression of glucose-regulated protein-78 (GRP78) and CCAT/enhancer-binding homologous protein (CHOP). Reduced ER stress was not due to activation of the unfolded protein response, indicating that Exendin-4 directly prevents ER stress. Exendin-4 treatment selectively protected cardiomyocytes from thapsigargin- but not tunicamycin-induced death. This suggests that Exendin-4 attenuates thapsigargin-mediated inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase-2a (SERCA2a). High glucose attenuates SERCA2a function by reducing SERCA2a mRNA and protein levels, but Exendin-4 treatment prevented this reduction. Exendin-4 treatment also enhanced phosphorylation of the SERCA2a regulator phospholamban (PLN), which would be expected to stimulate SERCA2a activity. In sum, Glp1r activation attenuates high glucose-induced cardiomyocyte apoptosis in association with decreased ER stress and markers of enhanced SERCA2a activity. These findings identify a novel mechanism whereby Glp1-based therapies could be used as treatments for diabetic cardiomyopathy. Topics: Animals; Apoptosis; Calcium-Binding Proteins; Cells, Cultured; Colforsin; Diabetic Cardiomyopathies; Endoplasmic Reticulum Stress; Enzyme Activation; Exenatide; Glucagon-Like Peptide-1 Receptor; Glucose; Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Hydrogen Peroxide; Hyperglycemia; Hypoglycemic Agents; Isoquinolines; Membrane Proteins; Myocytes, Cardiac; Oxidative Stress; Peptide Fragments; Peptides; Phosphorylation; Protein Kinase Inhibitors; Rats; Receptors, Glucagon; RNA, Messenger; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sulfonamides; Thapsigargin; Transcription Factor CHOP; Tunicamycin; Unfolded Protein Response; Venoms | 2013 |
Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion.
Exogenous administration of glucagon-like peptide (GLP)-1 improves glucose tolerance by stimulation of insulin secretion, inhibition of glucagon secretion, and delay of gastric emptying. It is not known which of these effects is involved in the action of endogenous GLP-1 to control blood glucose. To determine the role of endogenous GLP-1 on islet cell function and gastric emptying independent of variable glycemia, we clamped blood glucose before and during glucose ingestion with and without GLP-1 receptor blockade with exendin-[9-39] (Ex-9).. There were 10 healthy subjects that participated in two experiments each, one a control and one with infusion of 750 pm/kg . min Ex-9. Subjects consumed 75 g oral glucose solution mixed with d-xylose and (13)C-glucose while their blood glucose levels were held fixed at approximately 8.9 mmol/liter.. Plasma insulin levels during hyperglycemia alone were similar in the two studies (control, 282.5 +/- 42 vs. Ex-9, 263.8 +/- 59 pmol/liter) but were reduced by approximately 30% by Ex-9 after glucose ingestion (control, 1154 +/- 203 vs. Ex-9, 835 +/- 120 pmol/liter; P < 0.05). Blocking the action of endogenous GLP-1 caused an approximate 80% increase in postprandial glucagon concentrations. The appearance of ingested d-xylose in the blood was not affected by Ex-9, suggesting that postprandial secretion of GLP-1 has only minimal effects on gastric emptying of oral glucose.. These findings indicate that GLP-1 is an incretin in healthy humans at modestly supraphysiological blood glucose levels. The primary effect of GLP-1 to regulate oral glucose tolerance is mediated by effects on islet hormones and not on gastric emptying. Topics: Adult; Algorithms; Area Under Curve; Blood Glucose; Female; Gastric Emptying; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Glucose Clamp Technique; Humans; Hyperglycemia; Infusions, Intravenous; Insulin; Islets of Langerhans; Male; Middle Aged; Pancreatic Hormones; Peptide Fragments; Receptors, Glucagon; Xylose | 2008 |
Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage.
Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state. Topics: Adipose Tissue; Animals; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Blood Glucose; Brain; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Glucose Tolerance Test; Glycogen; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hyperglycemia; Hyperinsulinism; Insulin; Insulin Resistance; Insulin Secretion; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscles; Nuclear Proteins; Osmosis; Peptide Fragments; Phosphatidylinositol 3-Kinases; Phosphorylation; Receptor, Insulin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transcription Factors | 2005 |