exendin-(9-39) and Disease-Models--Animal

exendin-(9-39) has been researched along with Disease-Models--Animal* in 14 studies

Reviews

1 review(s) available for exendin-(9-39) and Disease-Models--Animal

ArticleYear
Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor.
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2016, Volume: 12, Issue:6

    GLP-1 secretion in response to meals is dramatically increased after gastric bypass operations. GLP-1 is a powerful insulinotropic and anorectic hormone, and analogs of GLP-1 are widely used for the treatment of diabetes and recently approved also for obesity treatment. It is, therefore, reasonable to assume that the exaggerated GLP-1 secretion contributes to the antidiabetic and anorectic effects of gastric bypass. Indeed, human experiments with the GLP-1 receptor antagonist, Exendin 9-39, have shown that the improved insulin secretion, which is responsible for part of the antidiabetic effect of the operation, is reduced and or abolished after GLP-1 receptor blockade. Also the postoperative improvement of glucose tolerance is eliminated and or reduced by the antagonist, pointing to a key role for the exaggerated GLP-1 secretion. Indeed, there is evidence that the exaggerated GLP-1 secretion is also responsible for postprandial hypoglycemia sometimes observed after bypass. Other operations (biliopancreatic-diversion and or sleeve gastrectomy) appear to involve different and/or additional mechanisms, and so does experimental bariatric surgery in rodents. However, unlike bypass surgery in humans, the rodent operations are generally associated with increased energy metabolism pointing to an entirely different mechanism of action in the animals.

    Topics: Animals; Bile Acids and Salts; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Gastrointestinal Hormones; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Insulin; Insulin Secretion; Intestinal Absorption; Mice; Obesity; Peptide Fragments; Remission Induction

2016

Other Studies

13 other study(ies) available for exendin-(9-39) and Disease-Models--Animal

ArticleYear
The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP-1 receptor knockout mice.
    Peptides, 2021, Volume: 135

    To study whether activation of GLP-1 receptors importantly contributes to the insulinotropic action of exogenously administered glucagon, we have performed whole animal experiments in normal mice and in mice with GLP-1 receptor knockout. Glucagon (1, 3 or 10 μg/kg), the GLP-1 receptor antagonist exendin 9-39 (30 nmol/kg), glucose (0.35 g/kg) or the incretin hormone glucose-dependent insulinotropic polypeptide (GIP; 3 nmol/kg) was injected intravenously or glucose (75 mg) was given orally through gavage. Furthermore, islets were isolated and incubated in the presence of glucose with or without glucagon. It was found that the insulin response to intravenous glucagon was preserved in GLP-1 receptor knockout mice but that glucagon-induced insulin secretion was markedly suppressed in islets from GLP-1 receptor knockout mice. Similarly, the GLP-1 receptor antagonist markedly suppressed glucagon-induced insulin secretion in wildtype mice. These data suggest that GLP-1 receptors contribute to the insulinotropic action of glucagon and that there is a compensatory mechanism in GLP-1 receptor knockout mice that counteracts a reduced effect of glucagon. Two potential compensatory mechanisms (glucose and GIP) were explored. However, neither of these seemed to explain why the insulin response to glucagon is not suppressed in GLP-1 receptor knockout mice. Based on these data we confirm the hypothesis that glucagon-induced insulin secretion is partially mediated by GLP-1 receptors on the beta cells and we propose that a compensatory mechanism, the nature of which remains to be established, is induced in GLP-1 receptor knockout mice to counteract the expected impaired insulin response to glucagon in these mice.

    Topics: Animals; Blood Glucose; Disease Models, Animal; Glucagon; Glucagon-Like Peptide-1 Receptor; Glucose; Histone-Lysine N-Methyltransferase; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Mice; Mice, Knockout; Pancreas; Peptide Fragments

2021
Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke.
    Basic research in cardiology, 2021, 05-03, Volume: 116, Issue:1

    Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO

    Topics: Animals; Arterioles; Cerebrovascular Circulation; Disease Models, Animal; Glucagon-Like Peptide-1 Receptor; Hindlimb; Incretins; Infarction, Middle Cerebral Artery; Ischemic Preconditioning; Ischemic Stroke; Male; Neuroprotective Agents; Peptide Fragments; Rats, Sprague-Dawley; Regional Blood Flow; Vasodilation; Vasodilator Agents

2021
GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice.
    Neurobiology of learning and memory, 2021, Volume: 182

    Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1β), IL-1β p17 (mature IL-1β), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1β, IL-1β p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1β, IL-1β p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice.

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Chronic Pain; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hippocampus; Interleukin-1beta; Memory Disorders; Mice; Neuralgia; Neuroinflammatory Diseases; Open Field Test; Peptide Fragments; Peripheral Nerve Injuries; Recognition, Psychology; Sciatic Nerve; Transcription Factor RelA; Tumor Necrosis Factor-alpha

2021
The intestine responds to heart failure by enhanced mitochondrial fusion through glucagon-like peptide-1 signalling.
    Cardiovascular research, 2019, Nov-01, Volume: 115, Issue:13

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone secreted by the intestine. Its receptor (GLP-1R) is expressed in various organs, including the heart. However, the dynamics and function of the GLP-1 signal in heart failure remains unclear. We investigated the impact of the cardio-intestinal association on hypertensive heart failure using miglitol, an α-glucosidase inhibitor known to stimulate intestinal GLP-1 production.. Dahl salt-sensitive (DS) rats fed a high-salt diet were assigned to miglitol, exendin (9-39) (GLP-1R blocker) and untreated control groups and treated for 11 weeks. Control DS rats showed marked hypertension and cardiac dysfunction with left ventricular dilatation accompanied by elevated plasma GLP-1 levels and increased cardiac GLP-1R expression as compared with age-matched Dahl salt-resistant (DR) rats. Miglitol further increased plasma GLP-1 levels, suppressed adverse cardiac remodelling, and mitigated cardiac dysfunction. In cardiomyocytes from miglitol-treated DS hearts, mitochondrial size was significantly larger with denser cristae than in cardiomyocytes from control DS hearts. The change in mitochondrial morphology reflected enhanced mitochondrial fusion mediated by protein kinase A activation leading to phosphorylation of dynamin-related protein 1, expression of mitofusin-1 and OPA-1, and increased myocardial adenosine triphosphate (ATP) content. GLP-1R blockade with exendin (9-39) exacerbated cardiac dysfunction and led to fragmented mitochondria with disarrayed cristae in cardiomyocytes and reduction of myocardial ATP content. In cultured cardiomyocytes, GLP-1 increased expression of mitochondrial fusion-related proteins and ATP content. When GLP-1 and exendin (9-39) were administered together, their effects cancelled out.. Increased intestinal GLP-1 secretion is an adaptive response to heart failure that is enhanced by miglitol. This could be an effective strategy for treating heart failure through regulation of mitochondrial dynamics.

    Topics: 1-Deoxynojirimycin; Animals; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Dynamins; Enteroendocrine Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glycoside Hydrolase Inhibitors; GTP Phosphohydrolases; Heart Failure; Ileum; Incretins; Male; Membrane Proteins; Mitochondria, Heart; Mitochondrial Dynamics; Mitochondrial Proteins; Myocytes, Cardiac; Paracrine Communication; Peptide Fragments; Rats, Inbred Dahl; Rats, Sprague-Dawley; Signal Transduction; Sodium Chloride, Dietary; Ventricular Function, Left

2019
Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.
    Physiology & behavior, 2018, 08-01, Volume: 192

    Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress.

    Topics: Animals; Anorexia; Central Nervous System Agents; Corticosterone; Cross-Over Studies; Disease Models, Animal; Eating; Feeding Behavior; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Peptide Fragments; Rats, Wistar; Restraint, Physical; Septum of Brain; Stress, Psychological

2018
Balanced Coagonist of GLP-1 and Glucagon Receptors Corrects Dyslipidemia by Improving FGF21 Sensitivity in Hamster Model.
    Drug research, 2017, Volume: 67, Issue:12

    Topics: Adipose Tissue; Aminoisobutyric Acids; Animals; Bile; Cholesterol; Cricetinae; Diet, High-Fat; Dipeptides; Disease Models, Animal; Fibroblast Growth Factors; Glucagon; Glucagon-Like Peptide 1; Homeostasis; Hyperlipidemias; Lipolysis; Liver; Male; Peptide Fragments; Polyethylene Glycols; Receptors, Fibroblast Growth Factor; Receptors, Glucagon; Triglycerides

2017
Dipeptidyl Peptidase 4 Inhibition Alleviates Shortage of Circulating Glucagon-Like Peptide-1 in Heart Failure and Mitigates Myocardial Remodeling and Apoptosis via the Exchange Protein Directly Activated by Cyclic AMP 1/Ras-Related Protein 1 Axis.
    Circulation. Heart failure, 2016, Volume: 9, Issue:1

    Ample evidence demonstrates cardiovascular protection by incretin-based therapy using dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 (GLP-1) under either diabetic or nondiabetic condition. Their action on myocardium is mediated by the cyclic AMP (cAMP) signal; however, the pathway remains uncertain. This study was conducted to address the effect of DPP4i/GLP-1/cAMP axis on cardiac dysfunction and remodeling induced by pressure overload (thoracic aortic constriction [TAC]) independently of diabetes mellitus.. DPP4i (alogliptin, 10 mg/kg per day for 4 weeks) prevented TAC-induced contractile dysfunction, remodeling, and apoptosis of myocardium in a GLP-1 receptor antagonist (exendin [9-39])-sensitive fashion. In TAC, circulating level of GLP-1 (in pmol/L; 0.86 ± 0.10 for TAC versus 2.13 ± 0.54 for sham control) unexpectedly declined and so did the myocardial cAMP concentration (in pmol/mg protein; 33.0 ± 1.4 for TAC versus 42.2 ± 1.5 for sham). Alogliptin restored the decline in the GLP-1/cAMP levels observed in TAC, thereby augmented cAMP signaling effectors (protein kinase A [PKA] and exchange protein directly activated by cAMP 1 [EPAC1]). In vitro assay revealed distinct roles of PKA and EPAC1 in cardiac apoptosis. EPAC1 promoted cardiomyocyte survival via concomitant increase in B cell lymphoma-2 (Bcl-2) expression and activation of small G protein Ras-related protein 1 (Rap1) in a cAMP dose-dependent and PKA-independent fashion.. DPP4i restores cardiac remodeling and apoptosis caused by the pathological decline in circulating GLP-1 in response to pressure overload. EPAC1 is essential for cardiomyocyte survival via the cAMP/Rap1 activation independently of PKA.

    Topics: Animals; Apoptosis; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Guanine Nucleotide Exchange Factors; Heart Failure; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Peptide Fragments; Piperidines; Proto-Oncogene Proteins c-bcl-2; rap1 GTP-Binding Proteins; Signal Transduction; Uracil; Ventricular Remodeling

2016
Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning.
    Cardiovascular research, 2016, Volume: 112, Issue:3

    Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1).. A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) or perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9-39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ∼50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9-39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade.. These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R activation is mediated by a mechanism involving M3 muscarinic receptors.

    Topics: Animals; Disease Models, Animal; Exenatide; Femoral Artery; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hormone Antagonists; Ischemic Preconditioning; Ligation; Male; Muscarinic Antagonists; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Peptides; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Receptor, Muscarinic M3; Signal Transduction; STAT3 Transcription Factor; Vagotomy; Vagus Nerve; Venoms

2016
The pro-healing effect of exendin-4 on wounds produced by abrasion in normoglycemic mice.
    European journal of pharmacology, 2015, Oct-05, Volume: 764

    Experimental evidence suggested that Exendin-4 (Exe4), an agonist at glucagon like receptor-1 (GLP-1R), promoted tissue regeneration. We aimed to verify the effect of Exe4, in the absence or in the presence of Exendin-4(9-39), an antagonist at GLP-1R, on the healing of abraded skin. Two wounds (approximately 1.1×1.1 cm(2); namely "upper" and "lower" in respect of the head) were produced by abrasion on the back of 12 mice, which were then randomly assigned to receive an intradermal injection (20 μl) of Group 1: saline (NT) or Exe4 (62 ng) in the upper and lower wound respectively; Group 2: Exendin-4(9-39) (70 ng) in the upper and Exendin-4(9-39) (70 ng) and, after 15 min, Exe4 (62 ng) in the lower wound. Wounds were measured at the time of abrasion (T0) and 144 h (T3) afterward taking pictures with a ruler and by using a software. The inflammatory cell infiltrate, fibroblasts/myofibroblasts, endothelial cells and GLP-1R expression, were each labeled by immunofluorescence in each wound, pERK1/2 was evaluated by Western-blot in wound lysates. At T3, the percentage of healing surface was 53% and 92% for NT and Exe4 wounds respectively and 68% and 79% for those treated with Exendin-4(9-39) and Exendin-4(9-39)+Exe4 respectively. Exe4, but not Exendin-4(9-39) induced quantitative increase in fibroblasts/myofibroblasts and vessel density when compared to NT wounds. This increase was not evident in wounds treated with Exendin-4(9-39)+Exe4. Exe4 promotes wound healing opening to the possible dermatological use of this incretin analogue.

    Topics: Animals; Cell Proliferation; Cell Transdifferentiation; Dermatologic Agents; Disease Models, Animal; Endothelial Cells; Enzyme Activation; Exenatide; Fibroblasts; Glucagon-Like Peptide-1 Receptor; Incretins; Male; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myofibroblasts; Peptide Fragments; Peptides; Phosphorylation; Skin; Time Factors; Venoms; Wound Healing; Wounds and Injuries

2015
Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression.
    Cardiology journal, 2013, Volume: 20, Issue:6

    High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia and reperfusion (I/R) injury. Exendin-4 (Ex-4), glucagon-like peptide-1 receptor agonist, has been reported to attenuate myocardial I/R injury. This study was to investigate the potential mechanism by which Ex-4 attenuates myocardial I/R injury in rats.. Anesthetized male rats were once treated with Ex-4 (5 μg/kg, i.v.) 1 h before ischemiain the absence and/or presence of exendin (9-39) (an antagonist for glucagon-like peptide-1 receptor, 5 μg/kg, i.v.), and then subjected to ischemia for 30 min followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) activity and infarct size were measured. HMGB1 expression was assessed by immunoblotting.. The results showed that pretreatment of Ex-4 could significantly decrease the infarct size and the levels of LDH and CK after 4 h reperfusion (all p < 0.05). Ex-4 could also significantly inhibit the increase of the MDA level, the decrease of the SOD level (both p < 0.05). Meanwhile, Ex-4 could significantly inhibit HMGB1 expression induced by I/R. Administration of exendin (9-39) could abolish the protective effect of Ex-4 (all p < 0.05).. The present study suggested that Ex-4 could attenuate myocardial I/R injury which may be associated with inhibiting HMGB1 expression.

    Topics: Animals; Creatine Kinase; Cytoprotection; Disease Models, Animal; Down-Regulation; Exenatide; Glucagon-Like Peptide-1 Receptor; HMGB1 Protein; L-Lactate Dehydrogenase; Male; Malondialdehyde; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Peptides; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Superoxide Dismutase; Time Factors; Venoms

2013
DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion.
    Naunyn-Schmiedeberg's archives of pharmacology, 2011, Volume: 384, Issue:2

    Dipeptidyl peptidase-4 (DPP4) enzyme inhibition has been reported to increase plasma glucagon-like peptide-1 (GLP-1) level for controlling postprandial glucose concentration. Both DPP4 inhibitors and GLP-1 analog have been approved for antihyperglycemic agents. In addition to the insulinotropic effect, GLP-1 signaling was reported to modulate cardiac function. DPP4 inhibition was shown to improve survival rate after myocardial infarction in mice, but the precise mechanism remains unknown. We aimed to compare the cardiovascular responses of ischemia/reperfusion (I/R) between wild-type and DPP4-deficient rats and investigate the underlying mechanism. Rats were subjected to 45 min of coronary artery occlusion, followed by reperfusion for 2 h. Cardiac function was characterized by analyzing pressure-volume loops. As compared to wild-type rats, after I/R, DPP4-deficient rats had better cardiac performance in association with less infarct size and cardiac injury markers (LDH, ANP, and BNP), which could be attenuated by exendin-(9-39), a GLP-1 receptor antagonist. Exendin-(9-39) could diminish the increased phosphorylation levels of myocardial AKT and GSK-3β as well as the higher expression of GLUT4 in post-infarcted DPP4-deficient rats. However, exendin-(9-39) could not completely abrogate the less infarct size in DPP4-deficient rats as compared with that in wild-type rats, implicating the involvement of GLP-1 receptor-independent pathway. In summary, this study demonstrated that the benefit of cardiac protective action against I/R injury was demonstrated in DPP4-deficient rats, which is mediated through both GLP-1 receptor-dependent and receptor-independent mechanisms.

    Topics: Animals; Blotting, Western; Dipeptidyl Peptidase 4; Disease Models, Animal; Glucagon-Like Peptide 1; Heart Function Tests; Hemodynamics; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Peptide Fragments; Rats; Rats, Inbred F344; Rats, Mutant Strains; Signal Transduction

2011
Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor.
    American journal of physiology. Endocrinology and metabolism, 2010, Volume: 299, Issue:4

    Antagonism of the glucagon receptor (GCGR) is associated with increased circulating levels of glucagon-like peptide-1 (GLP-1). To investigate the contribution of GLP-1 to the antidiabetic actions of GCGR antagonism, we administered an anti-GCGR monoclonal antibody (mAb B) to wild-type mice and GLP-1 receptor knockout (GLP-1R KO) mice. Treatment of wild-type mice with mAb B lowered fasting blood glucose, improved glucose tolerance, and enhanced glucose-stimulated insulin secretion during an intraperitoneal glucose tolerance test (ipGTT). In contrast, treatment of GLP-1R KO mice with mAb B had little efficacy during an ipGTT. Furthermore, pretreatment with the GLP-1R antagonist exendin-(9-39) diminished the antihyperglycemic effects of mAb B in wild-type mice. To determine the mechanism whereby mAb B improves glucose tolerance, we generated a monoclonal antibody that specifically antagonizes the human GLP-1R. Using a human islet transplanted mouse model, we demonstrated that pancreatic islet GLP-1R signaling is required for the full efficacy of the GCGR antagonist. To identify the source of the elevated GLP-1 observed in GCGR mAb-treated mice, we measured active GLP-1 content in pancreas and intestine from db/db mice treated with anti-GCGR mAb for 8 wk. Elevated GLP-1 in GCGR mAb-treated mice was predominantly derived from increased pancreatic GLP-1 synthesis and processing. All together, these data show that pancreatic GLP-1 is a significant contributor to the glucose-lowering effects observed in response to GCGR antagonist treatment.

    Topics: Animals; Antibodies, Monoclonal; Disease Models, Animal; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Tolerance Test; Islets of Langerhans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Peptide Fragments; Receptors, Glucagon; Signal Transduction

2010
Metabolic effects of sub-chronic ablation of the incretin receptors by daily administration of (Pro3)GIP and exendin(9-39)amide in obese diabetic (ob/ob) mice.
    Biological chemistry, 2007, Volume: 388, Issue:2

    Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro3)GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro3)GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p<0.05) lower in (Pro3)GIP-treated mice compared to control mice after just 9 days of treatment. (Pro3)GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p<0.05 to p<0.001). The (Pro3)GIP-treated group also exhibited significantly (p<0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39)amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro3)GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro3GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide-1 Receptor; Injections, Intraperitoneal; Insulin; Mice; Mice, Obese; Obesity; Peptide Fragments; Receptors, Gastrointestinal Hormone; Receptors, Glucagon; Structure-Activity Relationship; Time Factors

2007