exendin-(9-39) and Diabetes-Mellitus

exendin-(9-39) has been researched along with Diabetes-Mellitus* in 2 studies

Other Studies

2 other study(ies) available for exendin-(9-39) and Diabetes-Mellitus

ArticleYear
Effects of antidiabetic drugs on dipeptidyl peptidase IV activity: nateglinide is an inhibitor of DPP IV and augments the antidiabetic activity of glucagon-like peptide-1.
    European journal of pharmacology, 2007, Jul-30, Volume: 568, Issue:1-3

    Dipeptidyl peptidase IV (DPP IV) is the primary inactivator of glucoregulatory incretin hormones. This has lead to development of DPP IV inhibitors as a new class of agents for the treatment of type 2 diabetes. Recent reports indicate that other antidiabetic drugs, such as metformin, may also have inhibitory effects on DPP IV activity. In this investigation we show that high concentrations of several antidiabetic drug classes, namely thiazolidinediones, sulphonylureas, meglitinides and morphilinoguanides can inhibit DPP IV. The strongest inhibitor nateglinide, the insulin-releasing meglitinide was effective at low therapeutically relevant concentrations as low as 25 micromol/l. Nateglinide also prevented the degradation of glucagon-like peptide-1 (GLP-1) by DPP IV in a time and concentration-dependent manner. In vitro nateglinide and GLP-1 effects on insulin release were additive. In vivo nateglinide improved the glucose-lowering and insulin-releasing activity of GLP-1 in obese-diabetic ob/ob mice. This was accompanied by significantly enhanced circulating concentrations of active GLP-1(7-36)amide and lower levels of DPP IV activity. Nateglinide similarly benefited the glucose and insulin responses to feeding in ob/ob mice and such actions were abolished by co-administration of exendin(9-39) and (Pro(3))GIP to block incretin hormone action. These data indicate that the use of nateglinide as a prandial insulin-releasing agent may partly rely on inhibition of GLP-1 degradation as well as beta-cell K(ATP) channel inhibition.

    Topics: Animals; Blood Glucose; Cell Line; Cyclohexanes; Diabetes Mellitus; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulin; Mice; Mice, Obese; Nateglinide; Peptide Fragments; Phenylalanine

2007
Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin.
    Diabetologia, 2003, Volume: 46, Issue:2

    This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.. Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.. In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.. These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.

    Topics: Animals; Cells, Cultured; Cricetinae; Cricetulus; Cyclic AMP; Diabetes Mellitus; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperinsulinism; Insulin; Insulin Secretion; Mice; Obesity; Peptide Fragments; Postprandial Period; Protein Precursors; Spectrometry, Mass, Electrospray Ionization

2003