exenatide has been researched along with Ventricular-Dysfunction--Left* in 5 studies
3 trial(s) available for exenatide and Ventricular-Dysfunction--Left
Article | Year |
---|---|
Effects of exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: a randomized controlled trial against insulin glargine.
Multiple bloodglucose-lowering agents have been linked to cardiovascular events. Preliminary studies showed improvement in left ventricular (LV) function during glucagon-like peptide-1 receptor agonist administration. Underlying mechanisms, however, are unclear. The purpose of this study was to investigate myocardial perfusion and oxidative metabolism in type 2 diabetic (T2DM) patients with LV systolic dysfunction as compared to healthy controls. Furthermore, effects of 26-weeks of exenatide versus insulin glargine administration on cardiac function, perfusion and oxidative metabolism in T2DM patients with LV dysfunction were explored.. Twenty-six T2DM patients with LV systolic dysfunction (cardiac magnetic resonance (CMR) derived LV ejection fraction (LVEF) of 47 ± 13%) and 10 controls (LVEF of 59 ± 4%, P < 0.01 as compared to patients) were analyzed. Both myocardial perfusion during adenosine-induced hyperemia (P < 0.01), and coronary flow reserve (P < 0.01), measured by [. T2DM patients with LV systolic dysfunction did not have altered myocardial efficiency as compared to healthy controls. Exenatide or insulin glargine had no effects on cardiac function, perfusion or oxidative metabolism. Trial registration NCT00766857. Topics: Aged; Coronary Circulation; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Energy Metabolism; Exenatide; Female; Humans; Hypoglycemic Agents; Incretins; Insulin Glargine; Magnetic Resonance Imaging, Cine; Male; Middle Aged; Myocardial Perfusion Imaging; Myocardium; Netherlands; Oxidation-Reduction; Oxygen Consumption; Peptides; Positron Emission Tomography Computed Tomography; Recovery of Function; Stroke Volume; Systole; Time Factors; Treatment Outcome; Venoms; Ventricular Dysfunction, Left; Ventricular Function, Left | 2017 |
Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: A single-blind, randomized controlled trial.
We performed a randomized controlled trial with the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide as add-on to standard peri-operative insulin therapy in patients undergoing elective cardiac surgery. The aims of the study were to intensify peri-operative glucose control while minimizing the risk of hypoglycaemia and to evaluate the suggested cardioprotective effects of GLP-1-based treatments. A total of 38 patients with decreased left ventricular systolic function (ejection fraction ≤50%) scheduled for elective coronary artery bypass grafting (CABG) were randomized to receive either exenatide or placebo in a continuous 72-hour intravenous (i.v.) infusion on top of standard peri-operative insulin therapy. While no significant difference in postoperative echocardiographic variables was found between the groups, participants receiving exenatide showed improved peri-operative glucose control as compared with the placebo group (average glycaemia 6.4 ± 0.5 vs 7.3 ± 0.8 mmol/L; P < .001; percentage of time in target range of 4.5-6.5 mmol/L 54.8% ± 14.5% vs 38.6% ± 14.4%; P = .001; percentage of time above target range 39.7% ± 13.9% vs 52.8% ± 15.2%; P = .009) without an increased risk of hypoglycaemia (glycaemia <3.3 mmol/L: 0.10 ± 0.32 vs 0.21 ± 0.42 episodes per participant; P = .586). Continuous administration of i.v. exenatide in patients undergoing elective CABG could provide a safe option for intensifying the peri-operative glucose management of such patients. Topics: Aged; Cardiotonic Agents; Coronary Artery Bypass; Czech Republic; Drug Therapy, Combination; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Heart; Hospitals, University; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Incidence; Incretins; Infusions, Intravenous; Insulin; Intraoperative Complications; Male; Peptides; Perioperative Care; Postoperative Complications; Proof of Concept Study; Risk; Single-Blind Method; Venoms; Ventricular Dysfunction, Left | 2017 |
Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes.
Exercise is recommended as a cornerstone of treatment for type 2 diabetes mellitus (T2DM), however, it is often poorly adopted by patients. Even in the absence of apparent cardiovascular disease, persons with T2DM have an impaired ability to carry out maximal and submaximal exercise and these impairments are correlated with cardiac and endothelial dysfunction. Glucagon-like pepetide-1 (GLP-1) augments endothelial and cardiac function in T2DM. We hypothesized that administration of a GLP-1 agonist (exenatide) would improve exercise capacity in T2DM.. Administration of exenatide improved cardiac function and reduced arterial stiffness, however, these changes were not accompanied by improved functional exercise capacity. In order to realize the benefits of this drug on exercise capacity, combining exenatide with aerobic exercise training in participants with T2DM may be warranted. Topics: Aged; Arteries; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Cardiomyopathies; Double-Blind Method; Endothelium, Vascular; Exenatide; Exercise Tolerance; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Heart Ventricles; Humans; Hypoglycemic Agents; Male; Middle Aged; Oxygen Consumption; Peptides; Pulse Wave Analysis; Sedentary Behavior; Vascular Stiffness; Venoms; Ventricular Dysfunction, Left | 2017 |
2 other study(ies) available for exenatide and Ventricular-Dysfunction--Left
Article | Year |
---|---|
Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium.
We have demonstrated that GLP-1 improved myocardial functional recovery in acute myocardial ischemic injury. However, whether stimulation of the GLP-1 receptor (GLP-1R) with exendin-4, a selective GLP-1R agonist, could initiate a protective effect in the heart remains to be determined. Mouse myocardial infarction (MI) was created by ligation of the left descending artery. After 48 h of MI, animals were divided into the following groups (n = 5-7/group): 1) sham (animals that underwent thoracotomy without ligation), 2) MI [animals that underwent MI and received a daily dose of intraperitoneal injection (ip) of saline]; and 3) MI + exendin-4 [infarcted mice that received injections of exendin-4 (0.1 mg/kg ip)]. Two weeks later, cardiac function was assessed by echocardiography and an isovolumetrically perfused heart. Compared with control MI hearts, stimulation of GLP-1R improved cardiac function, which was associated with attenuation of myocardial hypertrophy, the mitigation of interstitial fibrosis, and an increase in survival rate in post-MI hearts. Furthermore, H9c2 cardiomyoblasts were preconditioned with exendin-4 at a dose of 100 nmol/l and then subjected to hydrogen peroxide exposure at concentrations of 50 and 100 μmol/l. The exendin-4 treatment decreased lactate dehydrogenase leakage and increased cell survival. Notably, this event was also associated with the reduction of cleaved caspase-3 and caspase-9 and attenuation of reactive oxygen species production. Exendin-4 treatments improved mitochondrial respiration and suppressed the opening of mitochondrial permeability transition pore and protected mitochondria function. Our results indicate that GLP-1R serves as a novel approach to eliciting cardioprotection and mitigating oxidative stress-induced injury. Topics: Animals; Antioxidants; Apoptosis; Cardiotonic Agents; Cell Line; Cell Survival; Disease Models, Animal; Exenatide; Glucagon-Like Peptide-1 Receptor; Heart Ventricles; Hypertrophy, Left Ventricular; Kaplan-Meier Estimate; Male; Mice, Inbred ICR; Mitochondria, Heart; Molecular Targeted Therapy; Myoblasts, Cardiac; Myocardial Infarction; Oxidative Stress; Peptides; Rats; Receptors, Glucagon; Ultrasonography; Venoms; Ventricular Dysfunction, Left; Ventricular Remodeling | 2014 |
Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes.
Glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is a remedy for type 2 diabetes mellitus (T2DM). Ex-4 ameliorates cardiac dysfunction induced by myocardial infarction in preclinical and clinical settings. However, it remains unclear whether Ex-4 may modulate diabetic cardiomyopathy. We tested the impact of Ex-4 on two types of diabetic cardiomyopathy models, genetic (KK) and acquired T2DM induced by high-fat diet [diet-induced obesity (DIO)], to clarify whether Ex-4 may combat independently of etiology. Each type of mice was divided into Ex-4 (24 nmol·kg(-1)·day(-1) for 40 days; KK-ex4 and DIO-ex4) and vehicle (KK-v and DIO-v) groups. Ex-4 ameliorated systemic and cardiac insulin resistance and dyslipidemia in both T2DM models. T2DM mice exhibited systolic (DIO-v) and diastolic (DIO-v and KK-v) left ventricular dysfunctions, which were restored by Ex-4 with reduction in left ventricular hypertrophy. DIO-v and KK-v exhibited increased myocardial fibrosis and steatosis (lipid accumulation), in which were observed cardiac mitochondrial remodeling and enhanced mitochondrial oxidative damage. Ex-4 treatment reversed these cardiac remodeling and oxidative stress. Cytokine array revealed that Ex-4-sensitive inflammatory cytokines were ICAM-1 and macrophage colony-stimulating factor. Ex-4 ameliorated myocardial oxidative stress via suppression of NADPH oxidase 4 with concomitant elevation of antioxidants (SOD-1 and glutathione peroxidase). In conclusion, GLP-1R agonism reverses cardiac remodeling and dysfunction observed in T2DM via normalizing imbalance of lipid metabolism and related inflammation/oxidative stress. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Diet, High-Fat; Disease Models, Animal; Dyslipidemias; Echocardiography, Doppler; Exenatide; Fibrosis; Glucagon-Like Peptide-1 Receptor; Glutathione Peroxidase; Hypertrophy, Left Ventricular; Hypoglycemic Agents; Inflammation Mediators; Infusions, Subcutaneous; Insulin Resistance; Intercellular Adhesion Molecule-1; Lipid Metabolism; Macrophage Colony-Stimulating Factor; Male; Mice; Mitochondria, Heart; Myocardium; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; Peptides; Receptors, Glucagon; Superoxide Dismutase; Superoxide Dismutase-1; Time Factors; Venoms; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2013 |