exenatide has been researched along with Vascular-Calcification* in 2 studies
2 other study(ies) available for exenatide and Vascular-Calcification
Article | Year |
---|---|
Metformin, resveratrol, and exendin-4 inhibit high phosphate-induced vascular calcification via AMPK-RANKL signaling.
Vascular calcification increases the risk of developing cardiovascular disease, and it is closely associated with metabolic disorders such as diabetes mellitus and non-alcoholic fatty liver disease. We investigated whether the activators of AMP-activated protein kinase (AMPK), metformin, resveratrol, and exendin-4, improved inorganic phosphate (Pi)-induced vascular calcification in rat vascular smooth muscle cells (VSMCs) and whether these effects were via AMPK. Pi increased calcium deposition in a dose-dependent manner, and metformin, resveratrol, and exendin-4 significantly decreased calcium deposition in the Pi-treated VSMCs. Moreover, metformin and exendin-4 increased the expression of a SMC marker gene, α-smooth muscle actin, and Ampk and reduced the receptor activator of nuclear factor kappa-Β ligand (Rankl)/osteoprotegerin ratio. Metformin, resveratrol, and exendin-4 reduced the expression of osteoblast differentiation-associated factors, such as runt-related transcription factor 2, bone morphogenic protein-2, p-small mothers against decapentaplegic 1/5/8, and Rankl. Inhibition of AMPK by siRNA adversely affected the anti-calcification effects of metformin, resveratrol, and exendin-4 and reversed the reduction of the expression of Rankl by metformin and exendin-4 in the Pi-treated VSMCs. These data suggest that metformin, resveratrol, and exendin-4 ameliorate Pi-induced vascular calcification by inhibiting osteoblast differentiation of VSMCs, which is mediated by AMPK. Topics: AMP-Activated Protein Kinases; Animals; Cell Line; Enzyme Activators; Exenatide; Metformin; Muscle, Smooth, Vascular; Phosphates; RANK Ligand; Rats; Resveratrol; Signal Transduction; Vascular Calcification | 2020 |
Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway.
Arterial calcification is an important pathological change of diabetic vascular complication. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important cytopathologic role in arterial calcification. The glucagon-like peptide-1 receptor agonists (GLP-1RA), a novel type of antidiabetic drugs, exert cardioprotective effects through the GLP-1 receptor (GLP-1R). However, the question of whether or not GLP-1RA regulates osteoblastic differentiation and calcification of VSMCs has not been answered, and the associated molecular mechanisms have not been examined.. Calcifying VSMCs (CVSMCs) were isolated from cultured human arterial smooth muscle cells through limiting dilution and cloning. The extent of matrix mineralization was measured by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot. Gene expression of receptor activator of nuclear factor-κB ligand (RANKL) was silenced by small interference RNA (siRNA).. Exenatide, an agonist of GLP-1 receptor, attenuated β-glycerol phosphate (β-GP) induced osteoblastic differentiation and calcification of human CVSMCs in a dose- and time-dependent manner. RANKL siRNA also inhibited osteoblastic differentiation and calcification. Exenatide decreased the expression of RANKL in a dose-dependent manner. 1,25 vitD3 (an activator of RANKL) upregulated, whereas BAY11-7082 (an inhibitor of NF-κB) downregulated RANKL, alkaline phosphatase (ALP), osteocalcin (OC), and core binding factor α1 (Runx2) protein levels and reduced mineralization in human CVSMCs. Exenatide decreased p-NF-κB and increased p-AMPKα levels in human CVSMCs 48 h after treatment. Significant decrease in p-NF-κB (p-Ser(276), p-Ser(536)) level was observed in cells treated with exenatide or exenatide + BAY11-7082.. GLP-1RA exenatide can inhibit human VSMCs calcification through NF-κB/RANKL signaling. Topics: Calcification, Physiologic; Cell Differentiation; Exenatide; Glucagon-Like Peptide-1 Receptor; Humans; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NF-kappa B; Peptides; RANK Ligand; Receptors, Glucagon; RNA, Small Interfering; Signal Transduction; Vascular Calcification; Venoms | 2014 |