exenatide has been researched along with Stroke* in 15 studies
8 trial(s) available for exenatide and Stroke
Article | Year |
---|---|
Management of Poststroke Hyperglycemia: Results of the TEXAIS Randomized Clinical Trial.
Hyperglycemia in acute ischemic stroke reduces the efficacy of stroke thrombolysis and thrombectomy, with worse clinical outcomes. Insulin-based therapies are difficult to implement and may cause hypoglycemia. We investigated whether exenatide, a GLP-1 (glucagon-like peptide-1) receptor agonist, would improve stroke outcomes, and control poststroke hyperglycemia with minimal hypoglycemia.. The TEXAIS trial (Treatment With Exenatide in Acute Ischemic Stroke) was an international, multicenter, phase 2 prospective randomized clinical trial (PROBE [Prospective Randomized Open Blinded End-Point] design) enrolling adult patients with acute ischemic stroke ≤9 hours of stroke onset to receive exenatide (5 µg BID subcutaneous injection) or standard care for 5 days, or until hospital discharge (whichever sooner). The primary outcome (intention to treat) was the proportion of patients with ≥8-point improvement in National Institutes of Health Stroke Scale score (or National Institutes of Health Stroke Scale scores 0-1) at 7 days poststroke. Safety outcomes included death, episodes of hyperglycemia, hypoglycemia, and adverse event.. From April 2016 to June 2021, 350 patients were randomized (exenatide, n=177, standard care, n=173). Median age, 71 years (interquartile range, 62-79), median National Institutes of Health Stroke Scale score, 4 (interquartile range, 2-8). Planned recruitment (n=528) was stopped early due to COVID-19 disruptions and funding constraints. The primary outcome was achieved in 97 of 171 (56.7%) in the standard care group versus 104 of 170 (61.2%) in the exenatide group (adjusted odds ratio, 1.22 [95% CI, 0.79-1.88];. Treatment with exenatide did not reduce neurological impairment at 7 days in patients with acute ischemic stroke. Exenatide did significantly reduce the frequency of hyperglycemic events, without hypoglycemia, and was safe to use. Larger acute stroke trials using GLP-1 agonists such as exenatide should be considered.. URL: www.australianclinicaltrials.gov.au; Unique identifier: ACTRN12617000409370. URL: https://www.clinicaltrials.gov; Unique identifier: NCT03287076. Topics: Adult; Aged; Exenatide; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hypoglycemia; Ischemic Stroke; Prospective Studies; Stroke; Treatment Outcome | 2023 |
Confirming the Bidirectional Nature of the Association Between Severe Hypoglycemic and Cardiovascular Events in Type 2 Diabetes: Insights From EXSCEL.
We sought to confirm a bidirectional association between severe hypoglycemic events (SHEs) and cardiovascular (CV) event risk and to characterize individuals at dual risk.. In a post hoc analysis of 14,752 Exenatide Study of Cardiovascular Event Lowering (EXSCEL) participants, we examined time-dependent associations between SHEs and subsequent major adverse cardiac events (CV death, nonfatal myocardial infarction [MI] or stroke), fatal/nonfatal MI, fatal/nonfatal stroke, hospitalization for acute coronary syndrome (hACS), hospitalization for heart failure (hHF), and all-cause mortality (ACM), as well as time-dependent associations between nonfatal CV events and subsequent SHEs.. SHEs were uncommon and not associated with once-weekly exenatide therapy (hazard ratio 1.13 [95% CI 0.94-1.36],. These findings, showing greater risk of SHEs after CV events as well as greater risk of CV events after SHEs, validate a bidirectional relationship between CV events and SHEs in patients with high comorbidity scores. Topics: Acute Coronary Syndrome; Aged; Cardiovascular Diseases; Comorbidity; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Double-Blind Method; Exenatide; Female; Hospitalization; Humans; Hypoglycemia; Hypoglycemic Agents; Male; Middle Aged; Myocardial Infarction; Risk Factors; Severity of Illness Index; Stroke | 2020 |
Prehospital exenatide in hyperglycemic stroke-A randomized trial.
Hyperglycemia is a predictor for poor stroke outcome. Hyperglycemic stroke patients treated with thrombolysis have an increased risk of intracranial hemorrhage. Insulin is the gold standard for treating hyperglycemia but comes with a risk of hypoglycemia. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are drugs used in type 2 diabetes that have a low risk of hypoglycemia and have been shown to exert neuroprotective effects. The primary objective was to determine whether prehospital administration of the GLP-1RA exenatide could lower plasma glucose in stroke patients. Secondary objective was to study tolerability and safety.. Randomized controlled trial comparing exenatide administrated prehospitally with a control group receiving standard care for hyperglycemia. Patients with Face Arm Speech Test ≥1 and glucose ≥8 mmol/L were randomized. Glucose was monitored for 24 hours. All adverse events were recorded.. Nineteen patients were randomized, eight received exenatide. An interim recruitment failure analysis with subsequent changes of the protocol was made. The study was stopped prematurely due to slow inclusion. No difference was observed in the main outcome of plasma glucose at 4 hours, control vs exenatide (mean, SD); 7.0 ± 1.9 vs 7.6 ± 1.6; P = .56). No major adverse events were reported.. We found no evidence that prehospital exenatide had effect on hyperglycemia. However, it was given without adverse events in this study with limited sample size that was prematurely stopped due to slow inclusion. Topics: Aged; Aged, 80 and over; Blood Glucose; Exenatide; Female; Humans; Hyperglycemia; Hypoglycemic Agents; Male; Middle Aged; Stroke | 2019 |
Clinical Outcomes in Patients With Type 2 Diabetes Mellitus and Peripheral Artery Disease: Results From the EXSCEL Trial.
Recent trials have identified anti-diabetes mellitus agents that lower major adverse cardiovascular event (MACE) rates, although some increase rates of lower-extremity amputation (LEA). Patients with peripheral artery disease (PAD) have greater incidence of diabetes mellitus and risk for LEA, prompting this investigation of clinical outcomes in patients with diabetes mellitus and PAD in the EXSCEL trial (Exenatide Study of Cardiovascular Event Lowering).. EXSCEL evaluated the effects of once-weekly exenatide (a GLP-1 [glucagon-like peptide-1] receptor agonist) versus placebo on the rates of the primary composite MACE end point (cardiovascular death, myocardial infarction, or stroke) among patients with type 2 diabetes mellitus. In this post hoc analysis, we assessed the association of baseline PAD with rates of MACE, LEA, and the effects of exenatide versus placebo in patients with and without PAD.. EXSCEL included 2800 patients with PAD (19% of the trial population). These individuals had higher unadjusted and adjusted rates of MACE compared with patients without PAD (13.6% versus 11.4%, respectively) as well as a higher adjusted hazard ratio (adjusted hazard ratio, 1.13 [95% CI, 1.00-1.27];. EXSCEL participants with PAD had higher rates of all-cause mortality and LEA compared with those without PAD. There were no differences in MACE or LEA rates with exenatide versus placebo. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT01144338. Topics: Aged; Cause of Death; Diabetes Mellitus, Type 2; Double-Blind Method; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Male; Middle Aged; Myocardial Infarction; Peripheral Arterial Disease; Risk Assessment; Risk Factors; Stroke; Time Factors; Treatment Outcome | 2019 |
Treatment with exenatide in acute ischemic stroke trial protocol: A prospective, randomized, open label, blinded end-point study of exenatide vs. standard care in post stroke hyperglycemia.
Rationale Post-stroke hyperglycemia occurs in up to 50% of patients presenting with acute ischemic stroke. It reduces the efficacy of thrombolysis, increases infarct size, and worsens clinical outcomes. Insulin-based therapies have generally not been beneficial in treating post-stroke hyperglycemia as they are difficult to implement, may cause hypoglycaemia, possibly increase mortality and worsen clinical outcomes. Exenatide may be a safer, simpler, and more effective alternative to insulin in acute ischemic stroke. Design TEXAIS is a three year, Phase 2, multi-center, prospective, randomized, open label, blinded end-point trial comparing exenatide to standard of care. It aims to recruit 528 patients with a primary end point of major neurological improvement at 7 days defined as a ≥8-point improvement in NIHSS score, or NIHSS 0-1. Secondary outcomes of hyper- and hypoglycaemia at 5 days and NIHSS and mRS at 90 days will be measured. The treatment arm will receive exenatide 5 µg subcutaneously twice daily. The control arm will receive standard stroke unit care. Continuous glucose monitors will track the dynamic variability of glucose. Conclusion TEXAIS aims to show that exenatide is safe and effective in the treatment of post-stroke hyperglycemia. It has been designed to be highly generalizable with an ability to enroll a large percentage of patients with acute ischemic stroke, regardless of admission blood glucose level, diabetes status, or stroke severity, with very low risk of hypoglycemia. Trial registration: ClinicalTrials.gov/ANZCTR NTA1127. Topics: Adolescent; Adult; Aged; Brain Ischemia; Exenatide; Female; Humans; Hyperglycemia; Hypoglycemic Agents; Male; Middle Aged; Prospective Studies; Stroke; Treatment Outcome; Young Adult | 2018 |
Baseline characteristics of patients enrolled in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL).
EXSCEL is a randomized, double-blind, placebo-controlled trial examining the effect of exenatide once-weekly (EQW) versus placebo on time to the primary composite outcome (cardiovascular death, nonfatal myocardial infarction or nonfatal stroke) in patients with type 2 diabetes mellitus (DM) and a wide range of cardiovascular (CV) risk.. Patients were enrolled at 688 sites in 35 countries. We describe their baseline characteristics according to prior CV event status and compare patients with those enrolled in prior glucagon-like peptide-1 receptor agonist (GLP-1RA) outcomes trials.. Of a total of 14,752 participants randomized between June 2010 and September 2015, 6,788 (46.0%) patients were enrolled in Europe; 3,708 (25.1%), North America; 2,727 (18.5%), Latin America; and 1,529 (10.4%), Asia Pacific. Overall, 73% had at least one prior CV event (70% coronary artery disease, 24% peripheral arterial disease, 22% cerebrovascular disease). The median (IQR) age was 63 years (56, 69), 38% were female, median baseline HbA1c was 8.0% (7.3, 8.9) and 16% had a prior history of heart failure. Those without a prior CV event were younger with a shorter duration of diabetes and better renal function than those with at least one prior CV event. Compared with prior GLP-1RA trials, EXSCEL has a larger percentage of patients without a prior CV event and a notable percentage who were taking a dipeptidyl peptidase-4 inhibitor at baseline (15%).. EXSCEL is one of the largest global GLP-1RA trials, evaluating the safety and efficacy of EQW with a broad patient population that may extend generalizability compared to prior GLP-1RA trials (ClinicalTrials.gov number, NCT01144338). Topics: Aged; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Double-Blind Method; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Male; Middle Aged; Myocardial Infarction; Peptides; Risk Factors; Stroke; Venoms | 2017 |
Rationale and design of Short-Term EXenatide therapy in Acute ischaemic Stroke (STEXAS): a randomised, open-label, parallel-group study.
Both hyperglycaemia and hypoglycaemia in acute ischaemic stroke (AIS) are associated with increased infarct size and worse functional outcomes. Thus, therapies that can maintain normoglycaemia during stroke are clinically important. Glucagon-like peptide 1 (GLP-1) analogues, including exenatide, are routinely used in the treatment of hyperglycaemia in type 2 diabetes, but data on the usefulness of this class of agents in the management of elevated glucose levels in AIS are limited. Owing to their glucose-dependent mechanism of action, GLP-1 analogues are associated with a low risk of hypoglycaemia, which may give them an advantage over intensive insulin therapy in the acute management of hyperglycaemia in this setting.. The Short-Term EXenatide therapy in Acute ischaemic Stroke study is a randomised, open-label, parallel-group pilot study designed to investigate the efficacy of exenatide at lowering blood glucose levels in patients with hyperglycaemia with AIS. A total of 30 patients presenting with AIS and blood glucose levels >10 mmol/L will be randomised to receive the standard therapy (intravenous insulin) or intravenous exenatide for up to 72 h. Outcomes including blood glucose levels within the target range (5-10 mmol/L), the incidence of hypoglycaemia and the feasibility of administering intravenous exenatide in this patient population will be assessed. A follow-up visit at 3 months will facilitate evaluation of neurological outcomes post-stroke.. This study has been approved by the local Institutional Review Board (Northern Sydney Local Health District Human Research Ethics Committee). The study results will be communicated via presentations at scientific conferences and through publication in peer-reviewed journals.. As GLP-1 analogues require elevated glucose levels to exert their insulin potentiating activity, the use of exenatide in the management of hyperglycaemia in AIS may reduce the incidence of hypoglycaemia, thereby conferring a benefit in morbidity and mortality for patients in the long term.. ACTRN12614001189617. Topics: Blood Glucose; Exenatide; Female; Humans; Hyperglycemia; Hypoglycemic Agents; Insulin; Male; Peptides; Pilot Projects; Research Design; Stroke; Treatment Outcome; Venoms | 2016 |
Exenatide in acute ischemic stroke.
Topics: Aged; Aged, 80 and over; Blood Glucose; Exenatide; Female; Humans; Male; Middle Aged; Neuroprotective Agents; Peptides; Pilot Projects; Stroke; Venoms | 2013 |
7 other study(ies) available for exenatide and Stroke
Article | Year |
---|---|
GLP-1R Agonist Exendin-4 Protects Against Hemorrhagic Transformation Induced by rtPA After Ischemic Stroke via the Wnt/β-Catenin Signaling Pathway.
Tissue plasminogen activator (tPA) is recommended by the FDA to dissolve intravascular clots after acute ischemic stroke (AIS). However, it may contribute to hemorrhagic transformation (HT). The Wnt/β-catenin signaling pathway plays an important role in regulating the blood-brain barrier (BBB) formation in the central nervous system. We explored whether glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (EX-4) reduces the risk of HT after rtPA treatment via the Wnt/β-catenin pathway by using a rat transient middle cerebral artery occlusion (MCAO) model in vivo and an oxygen-glucose deprivation plus reoxygenation (OGD/R) model in vitro. Our results showed that EX-4 attenuated neurological deficits, brain edema, infarct volume, BBB disruption, and rtPA-induced HT in ischemic stroke. EX-4 suppressed the production of ROS and the activation of MMP-9 to protect the integrity of the BBB by activating the Wnt/β-catenin signaling pathway. PRI-724, a selective inhibitor of β-catenin, was able to reverse the therapeutic effect of EX-4 in vivo and in vitro. Therefore, our results indicate that the GLP-1R agonist may be a potential therapeutic agent to decrease the risk of rtPA-induced HT after ischemic stroke via the Wnt/β-catenin signaling pathway. Topics: Animals; beta Catenin; Exenatide; Hemorrhage; Ischemic Stroke; Rats; Stroke; Tissue Plasminogen Activator; Wnt Signaling Pathway | 2022 |
Normalisation of glucose metabolism by exendin-4 in the chronic phase after stroke promotes functional recovery in male diabetic mice.
Glucagon-like peptide-1 (GLP-1) receptor activation decreases stroke risk in people with Type 2 diabetes (T2D), while animal studies have shown the efficacy of this strategy to counteract stroke-induced acute brain damage. However, whether GLP-1 receptor activation also improves recovery in the chronic phase after stroke is unknown. We investigated whether post-acute, chronic administration of the GLP-1 receptor agonist, exendin-4, improves post-stroke recovery and examined possible underlying mechanisms in T2D and non-T2D mice.. We induced stroke via transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (8 months of high-fat diet) and age-matched controls. Exendin-4 was administered for 8 weeks from Day 3 post-tMCAO. We assessed functional recovery by weekly upper-limb grip strength tests. Insulin sensitivity and glycaemia were evaluated at 4 and 8 weeks post-tMCAO. Neuronal survival, stroke-induced neurogenesis, neuroinflammation, atrophy of GABAergic parvalbumin+ interneurons, post-stroke vascular remodelling and fibrotic scar formation were investigated by immunohistochemistry.. Exendin-4 normalised T2D-induced impairment of forepaw grip strength recovery in correlation with normalised glycaemia and insulin sensitivity. Moreover, exendin-4 counteracted T2D-induced atrophy of parvalbumin+ interneurons and decreased microglia activation. Finally, exendin-4 normalised density and pericyte coverage of micro-vessels and restored fibrotic scar formation in T2D mice. In non-T2D mice, the exendin-4-mediated recovery was minor.. Chronic GLP-1 receptor activation mediates post-stroke functional recovery in T2D mice by normalising glucose metabolism and improving neuroplasticity and vascular remodelling in the recovery phase. The results warrant clinical trial of GLP-1 receptor agonists for rehabilitation after stroke in T2D.. This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc. Topics: Animals; Atrophy; Blood Glucose; Cicatrix; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Exenatide; Glucagon-Like Peptide-1 Receptor; Infarction, Middle Cerebral Artery; Insulin Resistance; Male; Mice; Parvalbumins; Stroke; Vascular Remodeling | 2022 |
The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke.
Preserving the integrity of the blood-brain barrier (BBB) is beneficial to avoid further brain damage after acute ischemic stroke (AIS). Astrocytes, an important component of the BBB, promote BBB breakdown in subjects with AIS by secreting inflammatory factors. The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) protects the BBB and reduces brain inflammation from cerebral ischemia, and GLP-1R is expressed on astrocytes. However, the effect of Ex-4 on astrocytes in subjects with AIS remains unclear.. In the present study, we investigated the effect of Ex-4 on astrocytes cultured under oxygen-glucose deprivation (OGD) plus reoxygenation conditions and determined whether the effect influences bEnd.3 cells. We used various methods, including permeability assays, western blotting, immunofluorescence staining, and gelatin zymography, in vitro and in vivo.. Ex-4 reduced OGD-induced astrocyte-derived vascular endothelial growth factor (VEGF-A), matrix metalloproteinase-9 (MMP-9), chemokine monocyte chemoattractant protein-1 (MCP-1), and chemokine C-X-C motif ligand 1 (CXCL-1). The reduction in astrocyte-derived VEGF-A and MMP-9 was related to the increased expression of tight junction proteins (TJPs) in bEnd.3 cells. Ex-4 improved neurologic deficit scores, reduced the infarct area, and ameliorated BBB breakdown as well as decreased astrocyte-derived VEGF-A, MMP-9, CXCL-1, and MCP-1 levels in ischemic brain tissues from rats subjected to middle cerebral artery occlusion. Ex-4 reduced the activation of the JAK2/STAT3 signaling pathway in astrocytes following OGD.. Based on these findings, ischemia-induced inflammation and BBB breakdown can be improved by Ex-4 through an astrocyte-dependent manner. Topics: Animals; Astrocytes; Blood-Brain Barrier; Chemokine CCL2; Chemokine CXCL1; Exenatide; Glucagon-Like Peptide-1 Receptor; Infarction, Middle Cerebral Artery; Inflammation; Male; Matrix Metalloproteinase 9; Rats; Rats, Sprague-Dawley; Stroke; Vascular Endothelial Growth Factor A | 2019 |
Gliptin-mediated neuroprotection against stroke requires chronic pretreatment and is independent of glucagon-like peptide-1 receptor.
Gliptins are anti-type 2 diabetes (T2D) drugs that regulate glycaemia by preventing endogenous glucagon-like peptide-1 (GLP-1) degradation. Chronically administered gliptins before experimental stroke can also induce neuroprotection, and this effect is potentially relevant for reducing brain damage in patients with T2D and high risk of stroke. It is not known, however, whether acute gliptin treatment after stroke (mimicking a post-hospitalization treatment) is neuroprotective or whether gliptin-mediated neuroprotection occurs via GLP-1-receptor (GLP-1R) activation. To answer these two questions, wild-type and glp-1r(-/-) mice were subjected to transient middle cerebral artery occlusion (MCAO). Linagliptin was administered acutely (50 mg/kg intravenously), at MCAO time or chronically (10 mg/kg orally) for 4 weeks before and 3 weeks after MCAO. Neuroprotection was assessed by stroke volume measurement and quantification of NeuN-positive surviving neurons. Plasma/brain GLP-1 levels and dipeptidyl peptidase-4 activity were also measured. The results show that the linagliptin-mediated neuroprotection against stroke requires chronic pretreatment and does not occur via GLP-1R. The findings provide essential new knowledge with regard to the potential clinical use of gliptins against stroke, as well as a strong impetus to identify gliptin-mediated neuroprotective mechanisms. Topics: Administration, Oral; Animals; Cell Survival; Cerebral Cortex; Corpus Striatum; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; DNA-Binding Proteins; Dose-Response Relationship, Drug; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Injections, Intravenous; Male; Mice; Mice, Knockout; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nuclear Proteins; Peptides; Stroke; Venoms | 2016 |
Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization.
Exendin-4 is a glucagon-like receptor 1 agonist clinically used against type 2 diabetes that has also shown neuroprotective effects in experimental stroke models. However, while the neuroprotective efficacy of Exendin-4 has been thoroughly investigated if the pharmacological treatment starts before stroke, the therapeutic potential of the Exendin-4 if the treatment starts acutely after stroke has not been clearly determined. Further, a comparison of the neuroprotective efficacy in normal and aged diabetic mice has not been performed. Finally, the cellular mechanisms behind the efficacy of Exendin-4 have been only partially studied. The main objective of this study was to determine the neuroprotective efficacy of Exendin-4 in normal and aged type 2 diabetic mice if the treatment started after stroke in a clinically relevant setting. Furthermore we characterized the Exendin-4 effects on stroke-induced neuroinflammation. Two-month-old healthy and 14-month-old type 2 diabetic/obese mice were subjected to middle cerebral artery occlusion. 5 or 50 µg/kg Exendin-4 was administered intraperitoneally at 1.5, 3 or 4.5 hours thereafter. The treatment was continued (0.2 µg/kg/day) for 1 week. The neuroprotective efficacy was assessed by stroke volume measurement and stereological counting of NeuN-positive neurons. Neuroinflammation was determined by gene expression analysis of M1/M2 microglia subtypes and pro-inflammatory cytokines. We show neuroprotective efficacy of 50 µg/kg Exendin-4 at 1.5 and 3 hours after stroke in both young healthy and aged diabetic/obese mice. The 5 µg/kg dose was neuroprotective at 1.5 hour only. Proinflammatory markers and M1 phenotype were not impacted by Exendin-4 treatment while M2 markers were significantly up regulated. Our results support the use of Exendin-4 to reduce stroke-damage in the prehospital/early hospitalization setting irrespectively of age/diabetes. The results indicate the polarization of microglia/macrophages towards the M2 reparative phenotype as a potential mechanism of neuroprotection. Topics: Animals; Biomarkers; Brain Ischemia; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Drug Evaluation, Preclinical; Exenatide; Gene Expression Profiling; Infarction, Middle Cerebral Artery; Male; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; Peptides; Phenotype; Stroke; Time Factors; Venoms | 2014 |
Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats.
Diabetes is a strong risk factor for premature and severe stroke. The GLP-1R (glucagon-like peptide-1 receptor) agonist Ex-4 (exendin-4) is a drug for the treatment of T2D (Type 2 diabetes) that may also have neuroprotective effects. The aim of the present study was to determine the efficacy of Ex-4 against stroke in diabetes by using a diabetic animal model, a drug administration paradigm and a dose that mimics a diabetic patient on Ex-4 therapy. Furthermore, we investigated inflammation and neurogenesis as potential cellular mechanisms underlying the Ex-4 efficacy. A total of seven 9-month-old Type 2 diabetic Goto–Kakizaki rats were treated peripherally for 4 weeks with Ex-4 at 0.1, 1 or 5 μg/kg of body weight before inducing stroke by transient middle cerebral artery occlusion and for 2–4 weeks thereafter. The severity of ischaemic damage was measured by evaluation of stroke volume and by stereological counting of neurons in the striatum and cortex. We also quantitatively evaluated stroke-induced inflammation, stem cell proliferation and neurogenesis. We show a profound anti-stroke efficacy of the clinical dose of Ex-4 in diabetic rats, an arrested microglia infiltration and an increase of stroke-induced neural stem cell proliferation and neuroblast formation, while stroke-induced neurogenesis was not affected by Ex-4. The results show a pronounced anti-stroke, neuroprotective and anti-inflammatory effect of peripheral and chronic Ex-4 treatment in middle-aged diabetic animals in a preclinical setting that has the potential to mimic the clinical treatment. Our results should provide strong impetus to further investigate GLP-1R agonists for their neuroprotective action in diabetes, and for their possible use as anti-stroke medication in non-diabetic conditions. Topics: Animals; Brain Ischemia; Cell Proliferation; Diabetes Mellitus, Type 2; Drug Evaluation, Preclinical; Exenatide; Glucagon-Like Peptide-1 Receptor; Hyperglycemia; Male; Microglia; Neurogenesis; Neuroprotective Agents; Peptides; Rats; Receptors, Glucagon; Stroke; Stroke Volume; Venoms | 2012 |
GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.
Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). A long-acting GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), is the first of this new class of antihyperglycemia drugs approved to treat T2DM. GLP-1Rs are coupled to the cAMP second messenger pathway and, along with pancreatic cells, are expressed within the nervous system of rodents and humans, where receptor activation elicits neurotrophic actions. We detected GLP-1R mRNA expression in both cultured embryonic primary cerebral cortical and ventral mesencephalic (dopaminergic) neurons. These cells are vulnerable to hypoxia- and 6-hydroxydopamine-induced cell death, respectively. We found that GLP-1 and Ex-4 conferred protection in these cells, but not in cells from Glp1r knockout (-/-) mice. Administration of Ex-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke model. Ex-4 treatment also protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). Our findings demonstrate that Ex-4 can protect neurons against metabolic and oxidative insults, and they provide preclinical support for the therapeutic potential for Ex-4 in the treatment of stroke and PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Brain Infarction; Cell Death; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Cytoprotection; Disease Models, Animal; Dopamine; Embryo, Mammalian; Exenatide; Gene Expression Regulation; Glucagon-Like Peptide-1 Receptor; Humans; Mesencephalon; Mice; Neurons; Parkinson Disease; Peptides; Rats; Receptors, Glucagon; Stroke; Treatment Outcome; Venoms | 2009 |