exenatide and Nerve-Degeneration

exenatide has been researched along with Nerve-Degeneration* in 3 studies

Other Studies

3 other study(ies) available for exenatide and Nerve-Degeneration

ArticleYear
Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease by exendin-4.
    Age (Dordrecht, Netherlands), 2012, Volume: 34, Issue:5

    Growing evidence suggests that type 2 diabetes mellitus (DM) is associated with age-dependent Alzheimer's disease (AD), the latter of which has even been considered as type 3 diabetes. Several physiopathological features including hyperglycemia, oxidative stress, and dysfunctional insulin signaling relate DM to AD. In this study, high glucose-, oxidative stress-induced neuronal injury and intracerebroventricular-streptozotocin (ICV-STZ) animals as the possible models for diabetes-related AD were employed to investigate the effects of exendin-4 (Ex-4), a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, on diabetes-associated Alzheimer-like changes as well as the molecular mechanisms involved. Our study demonstrated that GLP-1/Ex-4 could exert a protective effect against reduced viability of PC12 cells caused by high glucose and that this protective effect was mediated via the PI3-kinase pathway. In addition, GLP-1/Ex-4 ameliorated oxidative stress-induced injury in PC12 cells. In rat models, bilateral ICV-STZ administration was used to produce impaired insulin signaling in the brain. Fourteen days following ICV-STZ injection, rats treated with twice-daily Ex-4 had better learning and memory performance in the Morris water maze test compared with rats treated with saline. Additionally, histopathological evaluation confirmed the protective effects of Ex-4 treatment on hippocampal neurons against degeneration. Furthermore, we demonstrated that Ex-4 reversed ICV-STZ-induced tau hyperphosphorylation through downregulation of GSK-3β activity, a key kinase in both DM and AD. Our findings suggests that Ex-4 can protect neurons from diabetes-associated glucose metabolic dysregulation insults in vitro and from ICV-STZ insult in vivo, and that Ex-4 may prove of therapeutic value in the treatment of AD especially DM-related AD.

    Topics: Alzheimer Disease; Animals; Blood Glucose; Cell Survival; Diabetes Mellitus, Experimental; Exenatide; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hippocampus; Hypoglycemic Agents; Insulin; Male; Nerve Degeneration; Oxidative Stress; Peptides; Rats; Rats, Wistar; Venoms

2012
Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy.
    Experimental neurology, 2007, Volume: 203, Issue:2

    Pyridoxine (vitamin B6) intoxicated rodents develop a peripheral neuropathy characterized by sensory nerve conduction deficits associated with disturbances of nerve fiber geometry and axonal atrophy. To investigate the possibility that glucagon-like peptide-1 (7-36)-amide (GLP-1) receptor agonism may influence axonal structure and function through neuroprotection neurotrophic support, effects of GLP-1 and its long acting analog, Exendin-4 (Ex4) treatment on pyridoxine-induced peripheral neuropathy were examined in rats using behavioral and morphometric techniques. GLP-1 is an endogenous insulinotropic peptide secreted from the gut in response to the presence of food. GLP-1 receptors (GLP-1R) are coupled to the cAMP second messenger pathway, and are expressed widely throughout neural tissues of humans and rodents. Recent studies have established that GLP-1 and Ex4, have multiple synergistic effects on glucose-dependent insulin secretion pathways of pancreatic beta-cells and on neural plasticity. Data reported here suggest that clinically relevant doses of GLP-1 and Ex4 may offer some protection against the sensory peripheral neuropathy induced by pyridoxine. Our findings suggest a potential role for these peptides in the treatment of neuropathies, including that associated with type II diabetes mellitus.

    Topics: Amino Acid Sequence; Animals; Behavior, Animal; Blood Glucose; Body Weight; Exenatide; Ganglia, Spinal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Molecular Sequence Data; Muscle Tonus; Nerve Degeneration; Neurons, Afferent; Neuroprotective Agents; Peptides; Peripheral Nervous System Diseases; Postural Balance; Pyridoxine; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Sciatic Nerve; Venoms; Vitamins

2007
Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4.
    The Journal of pharmacology and experimental therapeutics, 2002, Volume: 302, Issue:3

    Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an endogenous insulinotropic peptide that is secreted from the L cells of the gastrointestinal tract in response to food. It has potent effects on glucose-dependent insulin secretion, insulin gene expression, and pancreatic islet cell formation. In type 2 diabetes, GLP-1, by continuous infusion, can normalize blood glucose and is presently being tested in clinical trials as a therapy for this disease. More recently, GLP-1 has been found to have central nervous system (CNS) effects and to stimulate neurite outgrowth in cultured cells. We now report that GLP-1, and its longer-acting analog exendin-4, can completely protect cultured rat hippocampal neurons against glutamate-induced apoptosis. Extrapolating these effects to a well defined rodent model of neurodegeneration, GLP-1 and exendin-4 greatly reduced ibotenic acid-induced depletion of choline acetyltransferase immunoreactivity in basal forebrain cholinergic neurons. These findings identify a novel neuroprotective/neurotrophic function of GLP-1 and suggest that such peptides may have potential for halting or reversing neurodegenerative processes in CNS disorders, such as Alzheimer's disease, and in neuropathies associated with type 2 diabetes mellitus.

    Topics: Animals; Basal Ganglia; Cell Death; Cell Survival; Cells, Cultured; Choline O-Acetyltransferase; Cyclic AMP; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Exenatide; Glial Fibrillary Acidic Protein; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glutamic Acid; Hippocampus; Ibotenic Acid; Immunohistochemistry; Nerve Degeneration; Neurons; Parasympathetic Nervous System; Peptide Fragments; Peptides; Protein Precursors; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Receptors, Glucagon; Venoms

2002